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Project Suminary

Modern requirements for high performance aircraft require advanced contioi o
ured flight vehicles where an increasing reliance i1s placed on computer coonteon svse
for flight performance. Such aircraft will be equipped with multiple sensors and act:--
ators and employ centralized control implemented by a high speed digitai comype-
For such systems, requirements for reliable multiloop control laws which are rchust in
a variety of changes in flight dynamics are prerequisite for successful flight operatic
Typical methods for the synthesis of high performance feedback control is bLased ..u -
niominal dynamic model for the aircraft flight dynamics. Such models are subiert +.
-arious limitations including the effect of changes in flight conditions affecting triin « -
equilibrium and consequent changes in the linear perturbation dynamics. Typical rar-
1rol design methods are based on the linear dynamics which will be subjcct to vari
:surces of model uncertainty in flight control applications.

In this project we have initiated studies of the application of new and advanced
nethods for control law synthesis for robust stabilization with respect to a combination
~f both unstructured model uncertainty (arising from neglected or parasitic dynaics)
ind structured model uncertainty (arising from parametric variations which occur as
iight conditions change.) Our efforts have focused on the characterization of a class of
<onlinear models for longitudinal dynamics of aircraft in level flight subject to changes in
tatic stability. Such “relaxed stability” aircraft configurations are currently at issue in a
vide variety of advanced designs including commercial transport and high performance
arrcraft. .

Our approach for control design is to employ H™ synthesis methods for optingsl
»hust stabilization for the unstructured model uncertainty using a computationally
~actable approach of Glover and McFarlane. The requirement for worst case tie v
ust) design to parametric uncertainty is included using a minimax optimization criteria.
iar studies have focused on a class of flight control models with physically hased para
“retric uncertainty. For these models we have the solution of the minimax or worst case
design by a straightforward procedure which can be readily combined with the require-
stents for robustness to parasitic dynamics using the closed form solutinn - 1the ptimin:

robust stabilization method developed by Glover and McFarlane.

Robust design for stability can be combined with requirements for robust perfor-
mance using frequency dependent constraints on the system gains. In this study we
highlight the extension of the optimization-based methods for robust design with re
pect to performance and stability. Examples are included to jllustrate the metheds
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Significantly, these methods allow frequency dependent weighting (i.e., “loop shaping”)
to be performed without specific regard to phase and can be applied with equal ease to
both single and multi-loop design problems.

In our modeling studies we have also focused on the relation between the basic state-
ment of the control design problem and the nonlinear aircraft model subject to physically
based parametric uncertainty. We have identified a relationship between the choice of
actuation and sensing (i.e., inputs and outputs), the nonlinear aircraft dynamics, and
the linear perturbation models used for control synthesis which highlights the limitations
of robust control synthesis. In particular, we identifv a relationship between conditions
for the existence of static bifurcations of the equilibria and the location of transmission
zeros for the linear perturbation model. Among many questions which this analysis
can help to address we identify—under realistic scalings of a generic relaxed stability
aircraft—the limits of linear control synthesis for parametric uncertainty.

We also demonstrate the computational simplicity of the proposed method for com-
bined structured/unstructured uncertainty synthesis for the relaxed static stability air-
craft model. Comparisons are given with several recently developed methods for robust
conurol design for linear system models subject to various combinations of parasitic and
parametric model urcertainty.
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1. Introduction and Background

Future aerospace vehicles will be expected to perform under circumstances in which the dynamics
of these vehicles are not expected to be well known. Moreover, because they will be required to
function close to, or even beyond, open loop stability limits, it is essential that their flight control
systems will be able to cope with modeling uncertainty.

The important considerations are typically of two types, variation of modeled system parameters
and unmodeled parasitic dynamics. Some examples of the former may be found in the pitch axis
dynamics of the AFTI/F-16 [52], the longitudinal dynamics of an advanced subsonic transport
airplane [1], and the vertical dynamics of a helicopter [2]. Examples of the latter include elastic
structural deformations of the airframe [3} as well as sensor and actuator dynamics [{4). Parametric
variations are structured uncertainties, whereas unmodeled dynamics are unstructured and typically
associated with time scale separation or high frequency effects.

Of special concern are those situations in which the aircraft is intentionally designed to be open
loop unstable or to have markedly reduced stability margins. In such cases parameter variations
dramatically affect the dynamics of the vehicle and its flyability. It is necessary to equip such
aircraft with stability augmenting feedback controllers which shape the handling qualities and
reduce the sensitivity to parameter variations. McRuer et al [4] provide a thoughtful assessment of
the current status and deficiencies in such systems. They note the following points:

(i) Controllers tend to be of wide bandwidth, resulting in sensitivity to vehicle structural
flexure, actuator dynamics and other high frequency effects; viz. unstructured model
uncertainty.

(i) While the feedback controller may be designed to produce desired responses to pilot
commands, responses to external (atmospheric) disturbances may be unusual and
deleterious.

(i11) The effective handling qualities introduced by augmented feedback control systems
have not been thoroughly investigated and opportunities for “task tailored dynamics”
should be exploited.

(iv) Flying qualities may deteriorate substantially near the limits
of control effectiveness.




The fact that such compensators for control configured aircraft are of high bandwidth is repeatedly
noted in the flight control literature {3]. It is also observed that many approaches to design of
stabilizing controllers, robust with respect to structured uncertainty, often lead to high gain
controllers. However, Schmitendorf [5] illustrates by example that high gain is not a necessary
element of robust control. It is clear that methods are needed which simultaneously address design
for both structured and unstructured model uncertainty.

Certain nonlinear issues are central to the design of controllers for relaxed static stability aircraft.
As already noted, augmented aircraft performance may radically diminish near limits of control
authority. Methods of control system design are needed which explicity account for control
saturation. Relaxed stability aircraft operate near equilibria with small domains of attraction and,
consequently, the ability to recover from disturbances may be dramatically improved with
nonlinear feedback laws. An example is given by Garrard and Jordan [6] in which the ability to
recover from stall is significantly improved for a fighter aircraft, operating at a high angle of attack,
by the use of a nonlinear controller. Gain scheduling in terms of measurable parameters has been
found necessary [1] to achieve desired performance over the full flight envelope when linear
feedback is employed. Exact linearization methods [48] provide means for designing nonlinear
feedback laws which satisfy these requirements. However, exact linearization is not always
compatible with control authority constraints and very little is known about the suitability of these
methods under conditions of incipient instability. Efficient methods are required for the design of
nonlinear controllers which articulate the tradeoff between performance and control restraints.

In recent years, numerous investigators have considered a variety of approaches to the
quantification of aircraft handling qualitites in a way which would be useful in analytical control
system design [7]. Such efforts take on special significance for the design of augmented flight
control systems. Some general discussion is given by McRuer et al [4] and additional insights may
be found in Wilhelm and Schafranek [8]. Nevertheless, many basic questions need to be answered
if the notion of systematically ‘designing in' desired flying qualities via feedback augmentation is
to become a reality. For example, common control architectures suggested for stabilizing open
loop unstable aircraft result in nonminimum phase zeros in the dynamics as seen by the pilot. This
issue has not been previously addressed although the control of nonminimum phase plants is
notoriously difficult.

In this report, we present preliminary results concerning the design of linear controllers for flight
control applications which are robust with respect to both structured and unstructured uncertainties.
Our approach centers around two elemental themes. First, we are concerned with the origins of
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parametric (structured) uncertainty in aircraft and in the development of an understanding of when
any such parametric variations are critical and cannot be imbedded in the unstructured uncertainty
without unacceptable conservatism. Second, we propose a method of worst case design for
dealing with combined structured and unstructured model uncertainty based on a formulation of the
H> optimization problem due to McFarlane and Glover [33].

In Section 2 we review control design methods for unstructured model uncertainty, thereby
developing the required foundational background for Section 3. Section 3 provides a review of
alternative approaches to extending these methods to accommodate structured modes ticeitainucs
in combination with unstructured model uncertainties and also introduces our view ot addressing
structured uncertainties as a minimax optimal control problem. Section 4 consists of a bench.uak
design problem: robust control system design for the longitudinal dynamics o1 a relaxed static
stability aircraft. We introduce in a rudimentary way our ideas aoout the use o1 vifurcation atiary s18
as a means of articulating the fundamental limits imposed by parametric vanations 1 tne anciai's
inherently nonlinear dynamics. In this example the minimuax approach is shown to be an method of
control system design. In Section 5 we summarize our conclusions and outline promising
directions for future research.

2. Robust Control Design for Unstructured Model Uncertainty

Analysis of control system stability plays a fundamental role in design tradeoffs for feedba:k
compensation. Classical design methods focus on a frequency domain description of SISO
systems to articulate the tradeoff between performance (e.g. sensitivity reduction) and stability
margins. The use of gain/phase margins provide a standard quantifiable doscription of these
tradeoffs directly in terms of frequency response data. From experience with classical design
methods it has become apparent that phase contributions and particularly phase errors due to
unmodeled dynamics play a significant role in the achievable performance and stability margirs. In
particular, phase errors can ultimately limit implementable gains and thus control bandwidth with
its intrinsic relation to system performance. For MIMO system design problems there is no simple
stability margin concept which can separately address the change in stability due to phase errors in
the model.

Recently, practical design for MIMO systems has focused on the natural extensions of gain margin
concepts to the multiloop case using the spectral matrix norm. Model uncertainty for a nominal
plant model G(s) may be described in an unstructured way by reference to an absolute error (or
additive perturbation, G(s)—G(s)+A4(s)) or a relative error (or multiplicative perturbation




G(8)={I+An(s)]G(<)). The model error is described by a bounding function of an appropriate
form as:

"Aaﬂco\!'iz <1 (o)
5 m<m>n2 < | (@)

Such mensures of model error are gross in the sense that they bound the model uncertainty in terms
of a conservative measure of the multiloop system gain as given by the choice of norm.

For application to design and analysis of closed loop stability with uncertain models as above we
are concerned with conditions under which the feedback will stabilize any one of all possible plant
models satisfying the above bounds. Consider the following design paradigm for unstructured
model uncertainty [15]. Assume that a nominal plant model G(s) is used to obtain a stabilizing

controller K(s) so that the resulting closed loop transfer function, Hs) = Gs) (I + GK(s))—1 , is
stable. The design is said to be robust with respect to stability if we can show that the fixed K(s)
will also stabilize [l + Am(s) ps) for any perturbation subject to the frequency dependent bound.
Early developments in methods for robust control design as in [15] focus on requirements for
frequency dependent shaping of the MIMO loop transmission KG(s) in terms of the above notion
of system gain; i.e., sufficient conditions for robust stability are:

(i) Ap(S) is a stable transfer function and
1
(i1) 'kGGw)2 s Tn_‘f(?)" for 0 cw<oo i e region where 1,,>>1.

The interpretation of the above conditions is intuitively appealing in that it generalizes typical

engineering practice of loop shaping to multiloop designs. In application it may be constraining
for several reasons:

1) The characterization of system gain may result in a very conservative description of
model uncertainty.

2) The restriction (i) may invalidate results in certain important applications.

Initial attempts to generalize the notion of systemn gain and thus permit analysis and design for more
realistic problems were based on generalization of conic sector bounds for transfer functions [57].
In this line of thinking the system perturbation was assumed to have the form

As) =L (s)(s)R(s)




ﬂ

where LR are stable transfer functions chosen to represent the frequency dependeat model

uncertainty in a somewhat more structured way and @ is a stable unknown transter function

subject to the frequency response bound

i <1
fogol, <1

for all ®. Application of the small gain theorem [18] will justify various sufficient conditions for

robust closed loop stability depending on where we choose to represent the model uncertainty

within the closed loop model. Typical model uncertainty assumptions and corresponding
. frequency dependent sufficient conditions are summarized in Table 1.

Table 1: Conditions for robust stability

Model Uncertainty Frequency dependent conditions
for robust stability

I-neglected sensor dynamics

-1 a7
G- (+ AG “[RGK('*GK) L ](J“’)u2<1- Vo

2-neglected actuator dynamics

G-Ql+4) “[RKG(' * "G)_1L_1](ico)u2 <1, Vo

3-neglected plant modes

"[H((l + G()JL"q(jw)ﬁ <1, Vo
G-G+A 2

In practical design problems, the engineer may be forced to consider a variety of mode! errc:
sources in combination, and in many cases, certain forms of model errors may be more significan:
in certain loops. This form of structured uncertainty was considered by Doyle et i {16, il
suggested that plant model uncertainty could be represented in a general way by isolating the model
uncertainty in an additional external feedback loop as shown in Figure 1. Thus the model
uncertainty is viewed as a parasitic feedback from certain error outputs e to certain disturbun.¢
inputs w. In this case if we take the transfer function model P, representing the known dynamus »,
1.1 the form,




MERSN
y B Pyw PyyJdL u
the assumed form of the uncertain plant is that of a Linear Fractional Transformation (LFT);
-1
Qa) = F’yu + waA(l - PewA) Peu.

In this form sufficient conditions for robust stability can be obtained by direct application of the
small gain theorem (using possible frequency dependent weighting functions L,R) in terms of an
LFT of P and K in the form;

- <1

-1
Hpew+ PouK(l - PyuA) wa]L

for all real frequencies.

2

A
disturbances W___| —» Z error outputs
P
——>
actuator
inputs measurements
K 44—

Figure 1: The general structure of the robust control problem.

Then a natural characterization of the significance of loop dependent modeling errors is to consider
the parasitic dynamic model to be structured in the sense that the transfer function has the form
A=diag(Ay,...,Am).

The association b2 . . .1 the spectral matrix norm (understood as a matrix norm subordinate to the
Euclidean vector nor:» °  ‘nite dimensions) and the maximum singular value makes contact with
the spectral prop.:rtes of singular value decomposition [18]. Following this line of reasoning,
Doyle postulated the existence of a structured singular value (SSV), defined with respect to
particular block diagonal structure of the loop parasitics. The definition of the SSV proposed by

&




Doyle was chosen to emulate the spectral properties of singular values. In particular, the fact that

the maximum (resp. minimum) singular values are related to the spectral matrix nornm as;

1
omadAt=lL, o (at=hl,

for A a nonsingular matrix. Thus, the minimum and maximum singular values are useful in
bounding the spectrum of matrices under perturbations. Considerable effort has been expended in
the search for computationally feasible algorithms for estimating the SSV [58], however, as of this
writing only fairly simple structures can be computed with any accuracy.

An important feature for robust control design methods is the incorporation of frequency shaping
requirements given by any of the various frequency dependent conditions for robust stability
described above. Such considerations have been implicit in design methods dating back to early
1970's [28]. One popular method provides an extension to the state space constructions of Linear
Quadratic Gaussian (LQG) optimal control problem by the incorporation of Loop Transfer
Recovery (LTR) [19]. We remark that the limitations described above all apply to LQG/LTR type
methods. The popularity of this method derives from the generality of approach to MIMO design
and the computational support available from various standard numerical algorithms available for
its implementation.

In the Phase I study we have investigated application of several new results in analysis and design
of robust control systems which address the above limitations. First, we employ a new type of
stability margin for multiloop feedback which quantifies closed loop internal stability in a perfectly
gencral way and embraces possibly unstable model uncertainty. The stability margin can be
alternately described from a geometric viewpoint or as the supremum over frequency of the gain of
a transfer function specially constructed from normalized coprime factorizations for the plant and
the compensator. Furthermore, recent results of Glover and McFarlane provide a synthesis
procedure for obtaining a controller which achieves (if possible) a prespecified stability margin of
this type. Their methods provide a simple computational scheme for determining the maximum
possible stabilitv margin attainable for a given plant model. To illustrate the application of these
results we have focused on a physically motivated flight control design example which is discussed
in the next section.

2.1. Geometric Stability Margin and Normalized Coprime Factorization
The geometric view of feedback considers the general MIMO feedback equations with G(s) a pxm
plant transfer function and K(s) mxp;




e

y(s) = G(s)u(s)
us) = - K(s) y(s) (2.1)

in the form

lm  KS) J(ue))
[GS) 4, ](y(s))_o. (2.1a)

In this form we focus attention on the relative orientation of two abstract objects;

G =ker[G(s),Ip], Ks=ker[In,K(s)], which can be viewed for any complex s as a pair of
subspaces in a p+m dimensional complex vector space of values of inputs and outputs. Moreover,
a number s for which these subspaces intersect nontrivially; i.e. dim(GsKg)>0 is a closed loop
pole. Following this line of thinking Brockett and Byrnes [21] describe a Nyquist stability
criterion for the general p#m case based on frequency response data. Their result---which is
somewhat abstract---provides an encirclement condition on an abstract space called the Grassman
manifold. Despite the abstract nature of the resulting stability test it does retain several essential
features of the popular single loop test developed by Nyquist. In particular, it identifies a Nyquist
contour I'g for the plant as the image of the imaginary axis s=jo under the map ker[G(s),-Ip] and a
separate object, 'k, obtained from the imaginary frequency response of ker[I;,K(s)).

In [22] Bennett and Baras describe a geometric stability margin based on an angle measure of the
distance between the intersection of the respective Nyquist contours, I'g and I'k. Their measure is

described in geometric terms but is meant to extend to the general MIMO feedback case the natural
practical notion of stability margin for the SISO case as;

1
9(S)+;E|.

The simplest way to motivate the definition of the geometric stability margin is to recall the

min
s=jo

definition of the canonical or principal angles between a pair of subspaces.

Definition [24]: The principal angles OGye [0,%] between a pair of complex subspaces,X,

Y, under the assumptions, dim X =p, dim Y=m and p<m, are given recursively for

k=1,2,...,p as,
cos6, =max max u'v= u'kvk
ueX veY
=1 =1
llJII2 IMI2
subject to the constraints




u"ju =0, v‘jv =0

for j=1,....k-1. Then the principal vectors for the pair of subspaces are

{ut,...,up,V1,.ceovm}).

Canonical angle analysis has found application in a number of areas including the computation of
statistical correlations. Numerical algorithms for the computation of canonical angles are largely

based on singular value decompostion [24]. In [24] Bjorck and Golub show that the computations
can be implemented by obtaining a pair of matrices st Oy of dimension nXp, nXm,

respectively such that Qx Qx = lp, Oyoy =lmand Q,, QY are a basis for X (resp. Y )---
using, for example, Gram-Schmidt procedure. Then the SVD of the product;

()'XQy = szY'Y

has singular values as

pX =diag{o1, ..,op} =Cc0S8 ©

which if ordered as G4 2

..-2 0 then the principal angles are obtained from
© = diag{e,,...0 )}

With 91 S... S ep.
Finally, in [22] Bennett and Baras show that via an alternate form of the above principal angle

computation one can associate a certain minimum singular value with a measure of how nearly two
1
subspaces intersect in a nontrivial way. In this case we obtain an nX(n-p) matrix Qx with

orthonormal columns whose span is the orthogonal complement of X. Then the SVD of the
product,
Q.'Q =¥, AY,
X q B ¢ Y
has singular values related to the canonical angles as

A=8ino,




Thus the minimum singular value 0 < A, £ 1 is nonnegative, real number which indicates how
nearly the pair of subspaces intersect. Let ¥ = k1(X »Y ), which we refer to as the minimum gap.

Definition: The geometric stability margin for the closed loop system is given as

6= gl:(:\ v(G., E) . (2.2)

In [23] we show that the computational problem of orthonormalization can be replaced by the
introduction of a pair of normalized coprime factors for G(s) and K(s).

Definition: A pxm transfer function G(s) has a stable normalized right (resp. left) coprime
factorization G=N M-! (resp. G=M-1N) if N,M (resp. M, N) are stable transfer functions
which satisfy,

N*M+M*M=ly,  (resp. N*N+M*M)=Ip). (2.3)

Moreover, it is shown in [25] that every pxm transfer function has a Normalized Right (resp. Left)
Coprime Factorization (NRCF or NLCF) which is unique up to a unitary change of basis in input
space c” (resp. output space c’ ).

We can then show [23] that the geometric stability margin for the general MIMO case can be
computed as follows. Obtain the NLCF of the plant G=M-IN and the NRCF of the compensator

1
K=PQ . Thenthe geometric stability margin can be given as

Ogp=m l n omln{d)(s)}
s=jo 24
where
® = NP + MQ (2.5)
To see the significance of this construction consider that the normalization processes obtains a
frequency dependent change of basis in the p-dimensional space of outputs such that the matrices

o[

has orthnormal columns and

has orthonormal rows.

10




An alternative expression for plant uncertainty advocated by Vidyasagar [25-27] in terms of
additive stable perturbations to the factors in a coprime factorization of the plant has certain
advantages in analysis of feedback systems. In recent work Glover and McFarlane {31] also
considered this class of unstructured perturbations and obtained a surprisingly explicit and
intuitively appealing solution to the corresponding robust stabilization problem when the coprime
factorization is normalized. In particular, they considered the problem of stabilization of a nominal
plant transfer function G(s) and a family of transfer functions given in terms of its NLCP

G=M-1N
given as
Ge={(M+AM) 1 (N+AN): IIMN]ilo < £} (2.6)

where ILllo is the H* norm of the transfer function given as

IGe)l, =supo . {Qs)}
S=|O

and Ay, Ay are stable unknown, transfer functions which represent the uncertainty in the

nominal plant model. It was demonstrated by Vidyasagar [25-27] that this description of plant
uncertainty has advantages over additive or multiplicative unstructured uncertainty models. For
example, the number of unstable poles may change as the plant is perturbed. Figure 2 illustrates
the class of systems described by perturbations of normalized coprime factors.

AN ' AM

[___pN—>O—-O—HM1

l K |e

Figure 2: Perturbation of NCPF

It is now apparent the role of coprime factorization originally conceived in the work of Youla,
Rosenbrock, and others was somewhat constraining. The goal of much of this reaserch was to
extend the obvious constructions for rational scalar transfer functions of factorization in terms of

numerator and denominator polynomials to the required matrix constructions for multiloop

11




systems. More recently, connections with state space constructions have become evident by
introducing an alternate viewpoint [25]. Instead, we think of coprime factorization over an
alternate algebraic ring of rational tranfer functions whose poles are contained in some arbitrary left

half plane within C. Since in most cases we are concerned with asymptotic stability, it suffices to
consider coprime factorizations over RH__, the space of all rational functions of the Laplace

variable s analytic for Re s>0. Then a state--space construction for the normalized left (resp. right)
coprime factorizations over RH_, can be obtained in terms of the solution to the Control (resp.

Filter) Algebraic Riccati Equation:

ATX+ XA -XxBB'X+C'C=0 (CARE)
AY+ YA -YC'cY+BB' =0 (FARE)

Specifically, let G(s) be realized by a linear state space system;

E(t) = AE(t) + Bu(t)
z(t) = C&(t)
so that s) = (fsi-A] _1B with (A,B,C) a minimal realization. Then the respective left

normalized coprime factors can be shown to be realized as

N(s) = C[sI-Ag}-1B (2.7a)
M¢s) = I-C[sI-Ag)-1H (2.7b)
where

H=-YC', Aj=A+HC 2.8)

The geometric stability margin provides a numerically attractive measure of closed loop stability
which includes the class of perturbations just described. It will recognize possible pole/zero
cancellations which might occur in the formation of any variation of the return difference matrices
and it provides a characterization of plant neighborhoods for robust analysis as above in terms of
metric specifically designed for the stability margin for multiloop stability directly in terms of the
generalized Nyquist criterion [21].

2.2. Design Methods for Optimal MIMO Stability Margins

The primary reason for the introduction of coprime factorization by Youla et al 28] was to facilitate
analytic optimization for the resolution of engineering tradeoffs in design. The coprime
factorization permits optimization to be carried out without regard for stability of the closed loop
system. This fact follows from the following well known lemma.

12




Lemma: For each real rational G(s) there exists left and right coprime factorizations;
G=NM-1= M-I, each contained in RH_,, and functions V,U,V,0e RH__ such that

Y UTMU [10] vo
N NV]—OI @2

With the above notation the Youla parametrization provides a complete parametric description of all
stabilizing compensators for a given plant transfer function G(s).

Lemma: Any compensator transfer function K(s) which stabilizes the plant G(s) in closed
loop can be factored as

K = (U+MQ)(V+NQ)1 = (V+NQ)- 1(T+MQ) (2.10)

for some Qe RH.__..

This has been called the Q-parametrization by Desoer et al [60]. It is significant to recognize thai
this parametrization guarantees that the closed loop system (see Figure 2) is internally stable; i.e .
the composite transfer function satisfies,

(p-G) " K(p-GK)

P 4 RH.,
(lm_m) G (lm—m)

The focus of the current phase 1 project is to investigate the application of some recent results of

K. Glover and D. McFarlane [31-33] on robust stabilization. In the next few paragraphs we
summarize the basis for their results.

Defintion: A feedback system consisting of plant transfer function G(s) and compensator
K(s) is robustly stable with respect to the margin € (or €-robustly stable) if and only if the
feedback system of (2.1) K, Gg is internally stable for any G¢ € Gg (as given in (2.6)).

The symbol € represents a stability margin for the system in the sense that it indicates the “size' of
wlerable perturbations internal to the plant (in terms of the coprime factorization). (As we will
demonstrate shortly, this stability margin is identical to the geometric stability margin desare
above.) The robust design problem is to stabilize not only the nominal plant, G, but the family of

13
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perturbed plants defined in (2.6) using a single feedback controller K(s) (see Figure). Their first
result provides necessary and sufficient conditions for robust stabilization of a given plant.

Lemma: The feedback system with plant G=M-IN is e-robustly stabilizable by some
compensator K if and only if

1
B <t @.11)
K(S)E 9‘H°° (I_GK)_IM_I €

= -]

inf ”[ K(-GK)- 1§41 ]“ <

This is stated in the form of an H™ optimization problem which could be solved by the standard
iterative procedures outlined in Francis [20]. To follow this approach one could first proceed by
recasiing the optimization problem as a “standard problem”. This is illustrated in Figure 3.

Ay Ay]

<
<—

o -—
U o l » N b(if -[M'1 *—

K ja

Figure 3: Robust Stabilization Problem in Standard Form

This can be seen by comparing the standard problem of Figure 1 where in this case we take

o bl L

- 9
M°™ MN | (2.12)

Then the standard H™ problem is to minimize the H*®> norm of the transfer function from w to ¢;

14




4 K- G~ 'M
Pyt Py KE-P, K) P21=[ (l—G(Y’M:J, .

which demonstrates the interpretation displayed in Figure 3.

However, by using normalized coprime factorizations, Glover and McFarlane show that the
iterative procedures can be avoided altogether, and an exact solution can be obtained very simply.
The key idea is to combine the Youla parameterization of stabilizing controllers described above
together with interpolation results of Nehari and Glover for the computation of the Hankel norm.
In particular, they show that the plant G is €-robustly stabilizable if and only if

€2 < 1- I (M, K] 12 (2.14)

where the Hankel norm of a stable, proper system G(s)=C[sI-A]-1B is given as

GO, = omaq T} = v/Ama P (2.15)

i.e., the maximum singular value of the associated Hankel operator,

Cot) =] Cet*"IBwWr)de
o . (2.16)

It is also shown in {30] that the Hankel norm can be obtained from the state space realization of the

stable system via the solutions of the pair of associated Lyapunov equations;

AP+ PA'+BB'=0
Ala+roa+clc=o, 2.17)

as shown above.

Using these constructions Glover and McFarlane show that the optimal stability margin for
G(s)=C[sI-A]"1B given by the minimum achievable g4 in (2.11) can be directly obtained from X,

Z>0, the positive definite solutions of the pair of Riccati equations (CARE) and (FARE) as

1
£ =

0
Srmaf?0 2.18)

Significantly, Glover and McFarlane also provide formulae for the characterization of all
controllers which achieve €-robust stabilization and from the previous discussion such level is
achievable only if e<gg, with gg the optimal stability margin obtained from (2.14). Formulae for
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the desired e-robust compensators are given directly in terms of state space realizations which
facilitates computer based computation. Details are given in [32]. It is also potentially important

to recognize the flexibility available in this characterization which permits consideration for various
additional design tradeoffs. In this study we have focused on the simplest form for realizing an €-

robust compensator. This is summarized as follows.

Theorem: A compensator K(s) which achieves the specified stability margin €, 0<e<egy, is
obtained in the form

K(s) = C,s1-A K]"Bk

(2.19)
where the state space realization is given by the matrices
-1, At
A =A.+Yy3W) ZCC,
-1, At
B, = y3(W)'zC|,
t
C,=BX, (2.20)
and where the matrix terms are
A.=A+BF
F=-B'X
W= X2 -0, (2.21)

and the scalar terms are

Y=u C=a/7-1 (2.22)

The following demonstrates the connection between the geometric stability margin and the €
stability margin used abcve.

Claim: The geometric stability margin is identical with the € stability margin introduced by
Glover and McFarlane in the context of the robust stabilization problem.

1
Proof: To see this consider a plant transfer function together with NLCP factorization G=M N

over RH ™. Then for some K(s) which stabilizes G(s) the achieved stability margin € is defined

in terms of the H*> norm as,
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-sup o [~ 30 "o

—1
Let K= PQ " be NRCP factorization of the compensator over RH . Then i is clear chat

{,Kp }(n -Gy M =[';] [MQ- ~P]

P
and since [J is an inner function the resulting norm can be obtained as

i (N

or equivalently,
e=inf omln{d)(s)}

s=jw
where
@(s) = [MQ- NP](s)

Thus we conclude that € = O¢,.

The significance of the geometric stability margin is to lend an insight relating the classical Nyquist
analysis to the MIMO setting and to clarify the role of the normalization in geometric terms. Thus
it is clear from the definition of the geometric stability margin that g, is the sine of the minimum
principal angle between a certain pair of subspaces and therefore 0<e<1. We suspect that the role
of the geometric picture may offer new insights in terms of frequency shaping design for combined
stability and performance robustness. In the Phase 1 study we have highlighted these features
briefly as part of the flight control benchmark.

2.3. Design Methods for combined performance and stability robustness

Loop shaping is a well established design methodology for control design for MIMO systems with
LQG/LTR being one of the better developed techniques. An advantage of loop shaping is that a
suitable loop shape for both stability and performance robustness can often be chosen---at least in
the case of unstructured model uncertainty---with relative ease. The motivation for loop shaping
comes from classical frequency domain design for SISO systems where lead/lag circuits as well as
PID circuits provide the component parts for attaining the desired loop shapes and stability margins
guide the designer in quantitative choices. For example, following SISO design we expect that
low frequency gains should be sufficiently high for typical performance requirements of good
tracking at steady state, while high frequency gain should be rapidly attenuated in regions where
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the model dynamics may neglect significant parasitics. The achievable roll off in SISO systems is
related to phase in a direct way as described by Bode. For MIMO systems it is in general also
difficult to guarantee good robustness in the gain cross over region---particularly for nonminimum
phase plants.

A new method of loop shaping has been proposed by McFarlane and Glover [33] and has been
examined for the flight control design considered in this study. In this approach, the results of the
problem of optimal robust stabilization of the normalized coprime factors (i.e., maximization of the
geometric stability margin) are used as a basis for design. As an example consider the robust
stabilization of a simple SISO plant and choose arbitrary stable NLCP factors;

Qs)=% Ms)=gp Ns) =gy
and take as compensator
K(s) =-k.
The class of systems that can be stabilized by K(s) can be described as

G,(s) = (M+ AM)‘1(N+ Ay)

with “[AM AN]L s esm(G K where Gsm(G K is the geometric stability margin which can be
computed as
; _1 - |
8 m(GK) =V [,K] (1-a) M [I
In this case we can obtain

1+k )2 torks<1

0.,0/s,-k) = °
o {(1+k2) V2 torkz1

Hence the stability margin is poor if either k<<l or k>>1 and, in fact, optimal if k=1. In the
former case the closed loop pole is moved to -k and hence a small change in the open loop pole---
cay to +2k---would not be stabilized by the fixed feedback. In the latter case, the gain is high so
that phase errors could cause loss of stability. Note that in both cases the interpretation just
described will depend on several factors, including, for example, the scaling of time, inputs, and
outputs. Note also that the loop shape, 1/w, has been substantially altered in either case if k<<1 or
k>>1.
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The method proposed in [33] and implemented in this study is as follows:

(1) Loop shaping: Choose weighting functions W; and W¢ such that the weighted or
shaped plantGg=WGW; has the desired loop shape.
(ii) Robust Stabilization: Compute the optimal stability margin £0=m:(' X0sm(Gs,K)

as in (2.18). If €0(Ggs)<<]1, return to (i), otherwise compute a controller Kg which
achieves the maximal stability margin for the weighted plant using (2.19)--(2.22).
(iii) Control Realization: The final controller is realized by K=W;K;W.

The design method proposed has several useful and assured properties. For example, the direct
optimization of the stability margin assures the geometric stability margin is achieved or execeeded
at all frequencies. This feature is demonstrated in the examples considered in this report and

provides a graphic demonstration of the broadband matching properties of H™ optimization.
Second, in the high gain region the controller K5 computed for the shaped plant reduces the loop
gains (i.e. min/max singular values) by a factor of at most €,(Gy) . Third, in the low gain region
the controller K can increase the loop gains by at most a factor of 1/eg(Gs) Moreover, if
£0(Gg)<<1, then O;m<e((Gs)<<1, for any stabilizing controller. Hence, in this case the loop shape
is not compatible with the robust stabilization requirement and any controller which achieves i wali
have a poor stability margin in the gain cross over region, or undesirable decrease n the jow
frequency gain (i.e., loos of perfromance), or undesirable increase in the high frequency gain q.e.,
loss of stability margin).

We therefore interpret the optimal stability margin as an indicator or ¢ngineening figure of meri: for
the compatibility of the loop shaping proposed in step (i). The resulting performance will be
robust to any small changes in plant parameters which can be absorbed into the unstructured model
uncertainty in terms of the perturbations to the NLCP factors. However, large changes in rea!
parameters arising from changes in the system operating point may be difficult if not impossible to
embed in perturbations to the NLCP factors of the plant without making the design overly

conservative. An example of this fact is discussed in the flight control benchmark considered in a
later section.

3. Worst Case Control Design for Combined Structured-Unstructured
Model Uncertainty
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In Figure 3.1 we display an uncertain system with feedback controller, K. A(s) is the plant model
uncertainty and it is desired that the transfer function from w to z remain bounded less than 1 for all
A such that ]A ||m < 1. The bound can be rescaled to any value and this problem can include

both performance and stability robustness.

A sufficient condition for robust performance is that the closed-loop transfer function from

— ottt = ettt o :
W=[v,w'] 1vcZ=1[82"] have an H* nomm less than 1. This condition is not conservative
if robust stability or nominal performance alone are considered, but will become conservative

when robust performance is required [16]). H™ optimization is an effective tool which can be
applied to such problems to maximize the robustness. Additionally, the computational
requirements are now understood {35]. The resulting approach is computationally quite tractable
and provides controllers with degree no greater than the degree of the model P(s). However, it
does not address structured uncertainty.

A(S)‘——1

— P(s) —

K(s) j&——

Figure 3.1: Uncertain Structure of Feedback Control Problem.

3.1. Summary of Some Existing Methods for Design

3.1.1. Structured Singular Values
The robust performance problem of Fig. 3.1 for "A L <1 and subject to a specific block

diagonal structure for A is considered by Doyle in terms of the 'structured singular value' analysis.
For a large number of blocks this problem is not tractable, but a good approximation can be
obtained by introducing diagonal 'D-scales’ on the inputs v and outputs z. These D-scales are
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chosen to be functions of frequency that minimize the H norm of the scaled transfer function
W — Z . This can provide an effective analysis tool.

The design problem is more difficult. It can be addressed by alternately minimiz.ng over the D-
scales and then over the stabilizing controllers K until convergence. There are few theoretical
results to justify this procedure. Real parametric variation can (in principle) also be addressed
using a nontrivial modification of the method [36]. Again, this is an analysis tool and
computationally more involved than the case of complex (i.e. frequency dependent) structured
uncertainties.

3.1.2. Methods Based on Kharitonov's Theorem
Kharitonov's theorem provides a remarkably efficient test for the stability of a class of systems
when the closed loop characteristic polynomial can be written as a polynomial with coefficients---
each of which lies in an independent interval of the parameter space. This result has lead to a
variety of methods for analysis of interval mratrices whose elements are parameters contained in
known intervals. However, for more general structures the resuiting tests become intractable
becouse of the size of the test matrices involved. Such tests are based on determinantal inequalities
and involve purely algebraic computations whose complexity leads to algorithms which are NP-
complete (in the jargon of computer science.)

3.1.3. Quadratic Stabilization
The work of Peterson and Hollot [37] on quadratic stabilization of uncertain systems considers
norm-bounded but possibly time-varying perturbations of a nominal system. Furthermore, they
employ a strong stability condition which requires the existence of a quadratic Lyapunov function.

It can be shown that this version of stability is identical to requiring an H™ norm bound on the
transfer function from the outputs of the perturbations back to the corresponding inputs (as in Fig
3.1). Robust stability then follows from a small gain argument. Results using this procedure can

thercfore be interpreted in an H™ robust stabilization/performance framework.
3.1.4. Combined LQG-H*> Design

Bernstein and Haddad [38] consider a combined LQG and H™ control design. Their introduction

suggest that they are minimizing the H? norm subject to a constraint on the H norm. This is in
fact not the case as a careful examination of the paper reveals. Instead they minimize upperbounds

rather than the actual norms as claimed. In many circumstances this will result in a good

approximation to the original problem. Indeed, in the case when the H™ constraint and the H2
criterion are both applied to the same closed loop transfer function, then (as shown by Mustafa

(39]) their criterion is identical to the entropy maximization criterion in H™ design as considered by
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Mustafa and Glover [40] (see also appendix). The entropy criterion for a closed loop transfer
function, H(s), is

o0

I(H,y) = - 5;‘7 [ 1og[det(1-y2H(jw)H*(w)} [dw (3.1)

Clearly, it is required that IIHli.<y for I(H,y) to be well-defined and it is easily shown that \j IH,p)

is an upper bound on the H2 norm.

The major contribution of these papers is to allow different transfer functions in the H2 and H™
criteria and can therefore address the problem of reduced order compensator design, the main
disadvantage being the substantial computational difficulty involved in solving the resulting
coupled Riccati equations.

In [41] Yeh et al consider the problem of designing controllers for the combination of both real
parametric uncertainty and unmodeled dynamics. The approach utilizes a combination of the
methods of Bernstein and Haddad together with the results of Peterson and Hollot. However,
since both approachs employ upper bounds one can expect the results to be conservative.

To be specific consider the closed loop system

x=(A+AA)x + Bw

z = Cx (3.2)
where
p
AA=3DAE, o (A)<1.
-1 (3.3)
This system can be rewritten in the form of Figure 3.1 by defining,
e = Eix, v, =Aiei (3.4)

to give,

p
X =AX+ _ZDi v,+Bw
i=1 . 3.5
The corresponding Riccati equation employed in [41] is then

0= A0+ QA +y2ac'ca+ + BB (3.6)
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where

Q= goi D, + ({éEi E‘i]Q‘

3.7

However, the existence of Q>0 to satisfy (3.7) is precisely a test on the H™ norm of the transter
function from w to z in Fig. 3.1. Hence the performance will be robust to the uncerainty as
claimed but will also be robust to the unstructured uncertainty.

This approach gives a viable design technique for structured and unstructured uncertainty,
however, it will be conservative because it essentially (although not obviously) embeds the

structured uncertainty into a larger unstructured uncertainty perturbation (e.g. plock o1’ A). in iac
if the coprime factors M; and N; are optimally scaled with frequency, then thio schenie becsites

identical to the structured singular values.

3.2. Worst Case Design as Minimax Optimal Control Problem
The geometric stability margin 0,,,(G,K) has been shown to be a suitable design indicator and

engineering figure-of-merit for both performance and stability robustness of closed loop control

systems. However, the control design procedure suggested above will be conservative if

structured uncertainty due to real parametric variation is present in the model. Instead, in this
section, we take the plant model to be of the form G (S) = s, ) , a function of a real parameter

k
vector o.. If we assume @€ O R, compact set in the k-dimensional real vector space then
the optimal "robust” design solution for stability is to find a compensator K whicii stavilizes i
nominal plant Go(s) and maximizes the worst case stability margin atained over the st

K
ae ®C R Here let Y, K)=1/8411,(G,,,K) then we wish to find K which solves;

infsup y(a, K
K ac® ) (3.8)

To see formally that this is appropriate for combined structured and unstructured uncertainty
consider the problem as follows: given the design model

(plant) y =G(a)u
(comp) u =Ky

with u an m-vector of plant inputs and y a p-vector of plant outputs. See Figure 3.2. The
structured plant uncertainty is characterized by a l-vector of parameters, ae 6, with Kl 20.
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G(s.o)

K le-

Figure 3.2: Robust Control Design Model for Mixed Uncertainty

Problem of Robust Stabilization: Find K(s) mXp (controller) fixed wrt. o which stabilizes a class
of plants G(a) given by:

(uc) Unstructured uncertainty conditions: for each ae®, G = MIN is taken to be a
normalized left coprime factorization (NLCP); i.e., (N,M) are left coprime and

MM+ NN =1

GeG, = { M+ Ayt (N+AQ 11 [Ay - AN Il < E) 3.9)
(sc) struc ncertain nditions:

GeG, ={G(s; 0):0e® ), R 20. (3.10)

For the mixed (or combined) uncertain nditions we simply mean
Ge Ge N G(x .
A closely related but more tractable problem is the maximin (or dual) version of (3.8);

. 1
supinfy(a,K =
ae g K ( bQ esm(Gaoi KO)

3.11)

whose solution is now feasible because of the results of Glover and McFarlane [32] as described in
Section 2.2 of this report. These results provide a simple and computationally straightforward
solution of the first level optimization problem; i.e., the optimal stability margin can be computed
for any choice of a. The use of minimax design for parametric model uncertainty has been
considered previously in only a few cases which have been reported in the open literature.
Examples available provide an insufficient basis for theoretical extension of the results to large,
complex problems but do suggest the practicality for relatively simple systems with small number
of parameters [43].

Sufficient conditions for the minimax and maximin problems to have the same saddle point
solution include the function +y(a, K) being convex in K and concave in € ©. [t is not
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apparent that either of these conditions are likely to be satisfied globally. It can however, be
shown that if we employ the Youla parametrization for the choice of K (i.e., to find a single
controller for all & € ©) then the objective will be convex in the Q parameter [20]. The behavior
with respect to & € © is unlikely to be concave except locally. At a saddle point it can be checked
whether © sm(Ga' K) is locally convex with respect to a. To do this we find the relation Ko(a)

by the minimization in (3.11); i.e., the optimal controller depending on the unknown narameters.

Then at the point (., KO) we check that esm(Ga’ K% is minimized with respect to o € ©,
Furthermore, if we use the suggested compensator K then we have the guaranteed bound

intfsup6 (G,,K 2esm(Gao, KJ

K ac® i3.12)
and we can evaluate the achieved performance
sup6,(G,,K,)
oc O (3.13)

10 establish the sadd'= point equivalence by comparison with the lower bound (3.12). The
combination of the steps (3.11) and (3.13) will in general require extensive evaluations of the
stability margins at various candidates (K,a) which may create extensive computational burden.
However, as illustrated in the benchmark example, several significant flight cortrol design issues
can be addressed using this approach. We emphasize aiso that since no bounding approximations
are used, the structure of the parametric uncertainty is retained in an essential way in the design
process. It is also apparent that the worst case design obtained can be directly understood trom the
model assumptions and the objective of a robust solution [42).

The minimax and maximin problems will also be equivalent in the case when

SUPO (G K) =(Gy , K)
) ° for all K; 3.14)

i.e. when the worst case set of parameters is independent of the choice of controller. This is often
the case, for example, when the extreme values of the parameter correspond t0 maximum phase lag
or ultimate instability (see example in the next section).

4. Control Design Benchmark-Robust Control for Aircraft with
Relaxed Static Stability

4.1. Longitudinal Dynamics

25




We summarize the basic equations of motion which govern the longitudinal dynamics of an
aircraft. Further details may be found in [49-52]. Figure 4.1 identifies the body axes (X-Z)!, the
velocity V, the body attitude 0, the flight path angle v, the angle of attack o=0+y, and the principle

forces acting on the airframe. These include lift, drag, thrust and weight.

L

w

z
Figure 4.1. Principle Longitudinal Parameters

The basic equations of motion include: linear momentum balance in the X direction, linear
momentum balance in the Z direction and angular momentum balance.

m(u+w0) = -mgsin® + Lysino + Lysinog + T - Deosa 4.1a)
m(w -ub) = mgcosO - Lycosa - Licosoy - Dsino (4.1b)
0 = My + lyLycosa - LiLicosoy - c (4.1¢)

where o is the tail angle of attack and is related to the angle of attack «, pitch rate 0, tail angle iy,
downwash angle € and the elevator deflection angle 8., via the relation

o =0 +ig- €+ O + (V)0
We also have

The X axis is usually aligned so that a=0 corresponds to zcro lift.
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The lift and drag forces depend on the velocity V, air density p and surface area S via the relations

L= CL(a)%p\ﬁS (4.2a)
D = Cp(0),pV2S \4.28)
M = Cim(o)2pV2S | (4.2¢)

In view of the dependence of the forces and moments on V, « it is convenient to replace u, w in
(4.1) by V, a using the transformation relations

w = Vsina (4.3a)
u = Vcosa (4.3b)

Thus, we obtain

m(cosaV-Vsinowo +Vsina9) = -mgsin® + Lysina + Lysinog + T - Dcoso (4.4a)
m(sinaV+Vcosad -Vcosaé) = mgcos@ - Lycosa - Licosa - Dsina (4.4b;
16 = My + lwLwcoso - LiLicosoy - c (4.4¢)

Notice that equations (4.4) can be organized in the vector form

mcose, -mVsinak mVsinae 0 v
msine. mVcosaa -mVcoso. 0 |d «
0 0 1 o |% e
0 0 0 I 6
[ -mgsin® + Lysina + Lisinog + T - Dcosa ]
mgcosB - Lycosa - Licosa, - Dsina
= ) 4.5)
0
L My + lwLwcosa - [(Lcosu, - ;) -

4.1.1 Nondimensional Equations of Motion
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Let us introduce a normalized velocity by identifying a nominal velocity (for example, the
maximum cruise velocity) Vg and define

v := (V/Vp)
and also the nondimensional quantities

K= (w/1%)
Ay = (Lw/mg), A :=(Lymg), A :=(D/mg), I1:=(T/mg), Zy = My/1*mg)

Equation (4.5) can now be written

coso. -vsina  vsinoe 0 v
sint  vcoso. -vcosa 0 |d o
o 0 1o |[% e
0 0 0 1 | (Volg)é N
B -sin@ + Aysino + Asino + IT - Acosa ]
. cos0 - Aycosa - Aicosa; - Asina
Vo (Vo/g)®
| (VaI*/gr2)(Zy + kAwcosa - (1-K)Acosa) - (cVo/mer2)(Vo/g)d

Now, let us introduce a nondimensional time, T, and pitch rate, q,
T:= (g/Vo)t, q:=(Vo/g)®

in order to obtain the nondimensional equations

cosax -vsinat vsink 0 v ]
sino. vcosa. -vcosa O jd] o
0 0 1 0 |dt
0 0 0 1 | q
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B -sin® + Awsina + Asinoy + IT - Acosa

cosB - Aycosa - Aicoso - Asina

B q (4.6)
Vgil* v
;2 {Zw + xAycosa - (1-x)Acosay} - -r;g% q

4.1.2 A Fictitious Aircraft
Level flight corresponds to ¥y = 0. We assume that the longitudinal body reterence axis
corresponds to the wing zero lift line and that level flight at nominal conditions (Vg,pg)
corresponds to o,0 = 0. In this case, the normalized lift forces take the form

Aw = fw(0)pL2, Ay = fi(o)pu2, with f(0) = 0, £,(0) =0, p = (p/po) 4.7)
The normalized drag force is assumed to be of the form

A = (a + b[fw()]2)pv2 (4.8)
and the moment is of the form

Iy = Ow(o)pu? (4.9)

In the following discussion, numerical computations and examples will be based on the following
model aircraft characteristics unless otherwise noted.

P=1,€=0,04@=0a=.1,b=l (4.10a)
~2.08(0-00)} —ap+8)-3(a-ag+5e)’
fu =22 ) = s'((“ %o*0e)-Ho-00+2e) ).ao = 05,¢= .1 (4.10b)
o0 aQ
21 %
Yg%zL =300, =% =8 (4.10c)

4.1.3 Static and Dynamic Stability

Equation (4.6) can be written

J(x)x = f(x,u,p) 4.11)
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where x denotes the state vector, u denotes the control variatles and p denotes a designated set of
system parameters. A triple (x*,u*,u*) is an equilibrium point if

f(x*,u*u*) =0 (4.12)
The corresponding perturbation equations are
oo _ Of of
J(x*)6x = 3 (x*,u* u*)6x + % (x*,u*,1u*)8u (4.13)

One easily verifies that det{J(x)}=v for V>0, so that under these conditions we can rewrite (4.13)
in the form

8k = A(U*)8x + B(u*)du (4.14)

Example. Notice that x=0, 8¢=.0005,11=.1, v=1, 0=.0495,6=-.0495,q=0 is an equilibrium point, corresponding to
level flight at nominal velocity. The perturbation equations are

5 -3960 2949 -10 O &0 9987 .0010
4] sa 1980 2180 0 1.0 Sa 0495 2.0 s
dt) 30 | | o 0 0 10 o |l o 0 [ Be ]
% 0 5992 0 -80 5 0 -599.3
The dynamical modes are _ _
-.0053 [~ -.0005 ]
_ . _| -0 | | 0273
short period A = -14.9611j23.366, v= 0009 +j 0360
L 8550 4 L -1516
[~ .3723 7] [ -.2536 )
, , 0081 | [ .0043
phugoid A = - .13873+j1.2339, v= 3847 +j 4060
[ sss4 J L 4182
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In characterizing equilibria for systems with feedback control it is usual to associate with (4.11) a
set of outputs equal in number to the control inputs

y = g(x,u,l) 4.15)
Then we obtain equilibria by specifying u* and solving the following equations for x*, u*

f*’*,*
(x uu)]=0

F(x*,u*,u*) =
(x KL*) [ g(x* 0% %)

(4.16)

Definition : An equilibrium point (x*,u* ,u*) is regular if there exists a neighborhood of p*
on which there exist unique functions x(u), u(p) satisfying

F(x(p),u(p),u) =0
with x*=x(u*), u*=u(u*).
Notice that the implicit function theorem implies that an equilibrium point is regular if
det [DxF DyF}* #0 4.17)
Definition : An equilibrium point (x*,u*,u¥) is a (static) bifurcation point with respect to
F(x,u,p) if in each neighborhood of (x*,u*,u*) there exists (xj,uj,p) and (x2,u2,)) with

(x1,up)#(x2,u2) and F(xq,u1,1)=0,F(x2,u2,)=0.

Clearly, an equilibrium point is a bifurcation point only if it is not regular. We can give a useful
interpretation to static bifurcation for systems defined by state Equation (4.11) and output Equation
(4.15). Let us define

Cur):=08 (x*u*pu®), D(#):=gE (x* %) (4.18)

so that in terms of perturbation variables the output equation becomes

Sy = C(u*)dx + D(u*)du 4.19)

31




With this notation (4.17) is equivalent to

* %k
et[A(u ) Bl )J;eo (4.20)

C(u*) D(u*)

Thus, we have the following conclusion.

Theorem : An equilibrium point (x*,u*,u*) is a (static) bifurcation point only if the
linearized system (4.14), (4.19) has a transmission zero at the origin.

We define stability of equilibria for parameter dependent dynamical systems as follows.

Definition : An equilibrium point (x*,u*,u*) is (dynamically) stable if it is regular and

stable in the sense of Liapunov.
Notice that this definition incorporates two essential elements. The equilibrium point persists
under infinitesimal variations of the parameter | (regularity), and the state trajectories remain
bounded following sufficiently small state perturbations (Liapunov stability).
It is common, and useful, to distinguish between dynamic and static stability. A necessary
condition for stability of the equilibrium point (x*,u*,u*) is that the matrix A(u*) has eigenvalues

with nonpositive real parts, so that it must satisfy
of
det{-A(u*)} = (-Ddet{J(x*)}det{z5- (x*,u*,u*)} 20
where n=dim(A). Recall that det{J(x)} =v > 0, so that this condition reduces to
of
(-Ddet{x_ (x*,u*,u*)} 2 0

Accordingly, we introduce the following notion of static stability.

Definition : An equilibrium point (x*,u*,u*) of (4.11), (4.15) is statically stable if it is
regular and if (—1)“det(g—’f( (x*,u*,u*)} 2 0.
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Notice that static stability is a necessary but not sufficient condition for stability Also, in the case
of aircraft longitudinal dynamics, as defined by (4.6), n=4. Our definition of static stability differs
from the conventional one (see Etkin [1]) only in the fact that we explicitly include the requirement
that the equilibrium point be regular. It is often the case that aircraft longitudinal static siability
reduces approximately to the requirement that the pitch stiffness is negative. Such an example is
given below.

4.2. Structured Model Uncertainty of Aircraft Longitudinal Model

Example I: Open Loop Properties. We give a simple example which illustrates the impostanice of
center of gravity location on aircraft longitudinal static stability. Consider the following problem.
With the elevator deflection angle & fixed and the velocity v specified, we wish to determine values
of a, 8 (or, equivalently, ¥) and IT which satisfy the equilibnium equanons:. ihe 1irst equation

can always be satisfied by choosing
I1 = sin(o-y) - Aysina - Asin(a+8) + Acosa (4.17)

Thus, we need only be concerned with the determination of o and 8 from the remaining two

equilibrium equations

cos(0) - Aycosa - Acos(a+8) - Asina =0 (4.18a)
Zw + KAycosa - (1-K)Acos(a+d) =0 (4.18b)

Let us consider K to be the only adjustable parameter. Then since a and 8 are the yependent

variables we have

DF = [DF DqoF DgF] = { A B 0}

C 0D

A= % [-chosa-Atcos(a+8)-Asina]
B = -sinB
= 5')& [Zw+wacosa-( 1 -K)A[COS((X.+5)]

D = Aycosa + Acos(o+9)

[Notice that ¢=0 in equilibrium.
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Notice that det{Dxf}=-BC=0 only if either O=nn for some integer n or C=0. Thus, a static
bifurcation occurs only if one of these conditions is satisfied simultaneously with (4.18). We can
eas’'v illustrate the significance of the case C=0 as x varies. Equation (4.18b) provides a relation
between the center of gravity location (x) and the angle of attack (o). Figures 4.2 and 4.3 illustrate
this relation for linear and cubic lift coefficient characteristics, respectively. Both curves reveal
similar qualitative behavior. There is a critical cg location x. (and an associated o,0.)
corresponding to a local maximum and which may be shown to coincide with C(0.,6:,%x.)=0. For
k> there are no equilibrium solutions and for K<k, there are two. In the latter case, the
equilibrium corresponding to C<0 (the one with smaller angle of attack) is stable whereas the the
other equilibrium corresponds to C>0 and is unstable.

0.4 - — , - . -

0.35¢

<
|3
T

0.25+

&
o
T

Angle of Attack

o=
—_
W

-

e
—

- . ) 7’

001 002 003 004 005 006 007 008 009
cg Location

0.05
0

Figure 4.2 Angle of attack, a, vs. center of gravity location, K, with v=.4 and various
values of § (from left to right §=-0.01, 0.01, 0.03, 0.04). Note that K negative means that

the center of gravity is forward of the wing center of pressure.
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Figure 4.3 Pitch stiffness, C, as a function of cg location, k. The same parameter values
as above.

Note that C may be interpreted as the pitch stiffness. It is a commonly used indicator of aircraft
longitudinal static stability [1-4]. In the aviation community static stability is distinct from dynamic
stability. An equilibrium point is said to be statically stable if C>0, statically unstable if C<0 and to
have neutral static stability if C=0. In the preceeding example neutral static stability corresponds to

a parameter value at which the equilibrium point is not regular - indeed, it corresponds to a
bifurcation point.

It should be emphasized that this static instability is distinct from aerodynamic stall phenomena.
The cubic lift coefficients used in generating Figure 4.3 are illustrated in Figure 4.4. It is readily

observed that the critical angle of attack in Figure 4.3 is well below the stall angle of attack for
either the wing or the tail.
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Angle of Attack

Figure 4.4. Normalized lift coefficients fy (solid) and fi/e’ (dashed) plotted as functions of

a.
In the following Figures 4.6 through 4.11 we illustrate how velocity affects the equilibrium values
of pitch angle and angle of attack.
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Figure 4.5a Pitch attitude,8, vs. cg location, x, with v=.4, and from left to right §=-0.01,
0.01, 0.03, 0.04, 0.05, 0.06. '

36




0.4 -

0.3}

0.2

T

Angle of Attack

0.1}

0
-0.02 0 002 0.04 0.06 008 0.1 0.12
cg Location

Figure 4.5b Angle of attack,a, vs. cg location, k, with v=.4, and from left to nght 8=-
0.01, 0.01, 0.03, 0.04, 0.05, 0.06.
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Figure 4.6a Pitch attitude,0, vs. cg location, x, with v=41, and from left to right d=-
0.01, 0.01, 0.03, 0.04, 0.05, 0.06.
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Figure 4.6b Angle of attack,a, vs. cg location, k, with v=.41, and from left to right 8=-
0.01, 0.01, 0.03, 0.04, 0.05, 0.06.
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Figure 4.7a Pitch attitude,0, vs. cg location, k, with v=.42, and from left to right 6=-
0.01, 0.01, 0.03, 0.04, 0.05, 0.06.
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Figure 4.7b Angle of attack,a, vs. cg location, k, with v=.42, and from left 10 -ight §=-
0.01, 0.01, 0.03, 0.04, 0.05, 0.06.
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Figure 4.8a Pitch attitude,0, vs. cg location, k, with v=.45, and from left to right 8=-
0.01, 0.01, 0.03, 0.04, 0.05, 0.06.
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Figure 4.8b Angle of attack,a, vs. cg location, «, with v=.45, and from left to right 6=-
0.01, 0.01, 0.03, 0.04, 0.05, 0.06.
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Figure 4.9a Pitch attitude,0, vs. cg location, x, with v=.6, and from left to right 8=-0.01,
0.01, 0.03, 0.04, 0.05, 0.06.
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Figure 4.9b Angle of attack,a, vs. cg location, K, with v=.6, and from left to right &+
0.01, 0.01, 0.03, 0.04, 0.05, 0.06.
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- Figure 4.10a Pitch attitude,, vs. cg location, k, with v=.8, and from lefi to right 8=-
0.01, 0.01, 0.03, 0.04, 0.05, 0.06.
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Figure 4.10b Angle of attack,a, vs. cg location, x, with v=.8, and from left to right 8=-
0.01, 0.01, 0.03, 0.04, 0.05, 0.06.
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Figure 4.11a Pitch attitude,9, vs. cg location, x, with v=1., and from left to right d=-
0.01, 0.01, 0.03, 0.04, 0.05, 0.06.
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Figure 4.11b Angle of attack,a, vs. cg location, x, with v=1., and from left to right 8=-
0.01, 0.01, 0.03, 0.04, 0.05, 0.06.

We obtain another perspective in Figures 4.12a,b&c where the complete equilibrium curves are
illustrated with normalized velocity v=.42 and a elevator deflection angle 8=0.03. These curves
should be compared with Figures 4.13 a,b&c, which correspond to v=1.
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Figure 4.12a Pitch attitude,9, vs. cg location, K, with v=.42, and elevator deflection angle
5= 0.03.
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Figure 4.12b Pitch Stiffness, C, vs. cg location, x, with v=.42, and elevator deflection
angle 6= 0.03.
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Figure 4.12c Angle of attack,a, vs. cg location, K, with v=.42, and elevator deflection
angle 0= 0.03.
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Figure 4.13a Pitch attitude,0, vs. cg location, k, with v=1., and elevator deflection angle
3= 0.03.
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Figure 4.13b Pitch Stiffness, C, vs. cg location, k, with v=1., and elevator deflection
angle 6= 0.03. .
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Figure 4.13¢c Angle of attack,x, vs. cg location, x, with v=1., and elevator deflection
angle 6= 0.03.

Example II: Closed Loop Properties. A somewhat more pertinent example with respect to control
system design is the following. Once again consider the longitudinal dynamics defined by
equation (4.6). It is desired to regulate the velocity and flight path angle v, v by adjusting the

elevator deflection angle and thrust 8, I1. Thus, we define the output equations

{ y1 }_l’ V-V* ]_[ V-V* ]
y2 4 | yp* 0.-0-y*
Given the desired flight path parameters v, Y we wish to determine values of «, 8, IT which satisfy

the equilibrium equations (4.16), with

-sin® + Awsina + Agsinoy + IT - Acosa ]

cosO - Awcosa - Aicosa, - Asina

f(x,u,p) := q (4.19a)
Vel* 5 A LKA Vo
| o2 {(Zw + KkAycosa - (1-x)Acosay) - mer? q |
V-V*
g(x,u,u) :=[ Oy*] (4.19b)
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Once again IT is directly determined from (4.17) and we need only be concerned with the solution

properties of the pair of equations

cos(0-y) - Awcosa - Acos(o+d) - Asina = 0 (4.20a)
Y + KAwcosa - (1-x)Acos(a+d) =0 (4.20b)

Figures 4.14 a&b illustrate the equilibrium values of elevator deflection, 9, and angle of attack, a,
as a function of cg location, X, at cruise conditions v=1, y=0.
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Figure 4.14a Elevator deflection, 9, as a function of cg location, x, withv=1, y=0.
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Figure 4.14b Angle of attack, o, as a function of cg location, k, withv=1, y=0.
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In Figures 4.15a&Db we illustrate the eigenvalue locations as a function of cg location, 0<k<.4.
Figure 4.15a clearly shows the expected short period and phugoid branches. A loss of static
stability occurs at approximately x=.12. Interestingly enough, although the Jacobian

Dy f(x*,u*,u*) is singular, this does not correspond to a bifurcation point because the Jacobian
Dy pF(x*,u*,u*) is not.
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Figure 4.15a Open loop cigenvalue locations as a function of cg location, K, at cruise
conditions.
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Figure 4.15b Near origin blowup of open loop eigenvalue locations as a function of cg
location, K, at cruise conditions. This figure clearly illustrates occurrence of a divergence

instability as the cg moves toward the rear of the aircraii and one of the phugoid roots
crosses into the right half plane. This occ s at approximately x=.12.
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4.3. Worst Case Design Analysis for Aircraft with Relaxed Static Stability
The linear dynamic model for the aircraft described in the previous section taken about the nominal
operating condition k=0 is statically and dynamically stable. The linear perturbation equations can
be written in the state space form as

X = Agx + Bgu

y = Cxx
with state  x=[0,7,0,q]%, control u=[I1,8¢]t. For x=0 we obtain the equilibrium conditions for
level flight in terms of the state vector,

1.
0.0497523
X
€q 0.0497523

0
and the control

[0.0002477 ]
€eq | 0.0996290

The linear perturbation model coefficients are then obtainec:

— -0.1990115 -0.9945490 -1. O.
-1.9900905 -22.099498 0.
Ag =
0. 0. 1.
— 0. -599.25016 0. -1.
= 0.0004955 0.9987626
-1.9999999 -0.0497317
Bp S
0. 0.
o

— -599.25016 0.

The model exhibits the characteristic pair of underdamped short period and phugoid dynamic
modes;

Open loop poles at k=0

- 11.587041 + 22.020408i
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- 11.587041 - 22.020408i
- 0.0622142 + 1.3864461i
- 0.0622142 - 1.3864461i

The choice of outputs defined by

1. 0. 0. 0.
c-|
0.-1.1.0.
gives a real transmission zeros at 77.196225 and - 78.196225. The right half plane transmission

zero which will ultimately limit the bandwidth of the closed loop system for robust stabilization.
The pole zero plot is shown in Figure 4.16.
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Figure 4.16: Pole-zero plot for nominal statically stable aircraft.
If the CG shifts aft by .12 relative to the effective nominal moment arm for tail controlled pitch

motion the aircraft becomes both statically and dynamically unstable. The resulting pole-zero plot
is shown in Figure 4.17, although the equilibria shift only slightly to :
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Figure 4.17: Pole-zero plot for statically unstable aircraft configuration.

To procede with the minimax (worst case) design we first determine the minimum achievable
stability margin based on the optimization procedure and its dependence on the unknown parameter
0 <x<0.12. This dependence is shown in Figure 4.18. The optimal geometric stability margin is

dependent on the CG shift as shown. For this range of the independent parameter the worst case
condition is the aft most location of the CG as expected.
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Figure 4.18: Optimal Stability Margin Dependence on k.

The optimal robust geometric stability margin can be given the interpretation of providing a bound
on the allowable perturbation to a normalized left coprime factorization of the plant. One can
therefore ask if the unstructured uncertainty condition for robust synthesis can provide conditions
for stabilization of the flight dynamics model with aftward shift in the CG of 0.12. From the
above the optimal stability margin variation is continuous and monotonically decreasing with the aft
shift. Taking the aft-most location as worst case we can compute a maximum additive plant
perturbation directly in terms of the normalized left coprime factors of the plant for the nominal
case

Go(s) = Mg (5)N (s)

and for the case at k=0.12;

Gi(s) = M ()N, (5)

then we can obtain the required bounds by plotting the singular values of

[ My N1 Goo) - [M, N ] Go)

as shown in Figure 4.19.
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Figure 4.19: Singular Values of NCP Factor Perturbation

Thus using the unstructured model uncertainty description obtained from the geometric stability
margin and the expected perturbation to the NLCP factors we see that the required bound is

€¢m=0.7619. This means that to design a stabilizing compensator using a totally unstructured

requirement is so conservative in this case that it cannot in fact be obtained! Indeed, from the
above plot of optimal stability margin vs. CG shift we see that no operating point obtains an
optimal geometric stability margin in excess of 0.56. This is typical of unstructured uncertainty
modeling and robust control synthesis. However, it is significant to note that using the geometric
stability margin and the optimal robust stabilization problem a unique, quantitative criterion for
robust stabilization is obtained which addresses the problem without examining frequency
dependent data.

To illustrate the options for design using the optimal robust stabilization formulation we first
consider scaling and its effect on the closed loop design. We first consider the design for a fixed,

nominal operating point.

The MIMO open loop system has gains displayed as frequency dependent singular value plot as
shown in Figure 4.20.
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Figure 4.20: Singular value Loop Gains for nominal Plant Transfer Function.

Given the ultimate bandwidth limitation imposed by the right half plane zero at -77 we choose a
nominal crossover frequency of w=10. Rescaling the inputs and outputs proceeds first by
consideration of the relative importance of changes in each channel. For the nondimensional model
the inputs consist of thrust and deflection of the tail control surface and the outputs include velocity
and flight path angle. Scaling to obtain equalization of each channel follows from the choice of
nominal value and relevant changes as:

[ 11 ] [ 0 ] [ 0.1 ]
u=
| 5 0 0.5236
[ v :l [ 1 ] [ 0.1 ]
y =
|y 0 0873
Let the input/output scaling be given by the diagonal matrices as :

S [.1 0 }_
UESHE g 5236 11

nominal relative

.9 [.05 0 ]~
Y=Y = o 0873 F

then the transfer function becomes G(s) = S;,lG(s)Sl .
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Finally, to specify desired crossover frequency we reduce the effective plant gain in each channel
so that the maximum singular value at desired crossover satisfies . The resulting scaled plant has
gains as shown in Figure 4.21 for the worst case parameter value of k=.12.
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Figure 4.21: Singular Value Loop Gains of Scaled Plant.

The optimal geometric stability margin for the scaled plant is now computed as €,,=.2772. We

note that the procedure described previously suggests that the system has compatible loop shape.
We can now obtain a suboptimal controller for any desired level of stability robustness as
Y21/.561=1.783. We take the suboptimal level y=1.8 and obtain by the (2.19)--(2.22) the
controlier realization as:

-137.81869 -159.443 157.59503 0.0071676
202.57323 240.27344 -262.55426 0.9675697

¢ 687.31722 884.00473 -884.00473 1
4043.8865 4666.5232 -5317.9173 -10.610107

-6.694682 13.840263
10.200762 -22.84293
¢ 34.365861 -77.173613
196.7627 - 440.94193
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{4.7375856 9.371697 -11.645754 -0.4191080]
¢ 18.620063 -0.4424553 -0.2898523 -0.0357794

To illustrate that the resulting suboptimal controller achieves the required stability margin over a
broad range of frequencies we plot the singular values of

d(jo) = (MQ - NPI(jw)
where K(s) = P(s)Q"1(s) is a normalized right coprime factorization for the achieved controller
K(s) = Cc[sI-A]-1B (see Figure 4.22). To highlight the broadband solution obtained from this

problem we plot separately the maximum singular value of F (i.e. the geometric stability margin) in
Fig. 4.22a and minimum singular value in Fig. 4.22b.
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Figure 4.22a: Maximum Singular Value of ®
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Finally, the achieved loop gains are displayed by plotting the singular values of K(s)G(s) in Figure
4.23.
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Figure 4.23: Achieved loop transmission gains.

For direct comparison we superimpose the desired loop shape with that achieved from the
suboptimal compensator for the scaled plant response.
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Figure 4.24: Achieved/desired loop transmission gains

4.4. Performance Considerations for Aircraft Flight Control

In this problem we introduce two modifications of the previous problem. First to illustrate design
for performance robustness we introduce a requirement for integral action in each channel.
Second, to test the worst case parametric design problem we perform the design for the worst case
operating point at k=.12. We also assume there is a dominant source of modeling error which is
characterized as relative error in terms of bounds on multiplicative perturbation at the system
output. We assume this is given by a specification that the model is to be considerd accurate to
10% for frequencies less than 2. Beyond w>2 the model relative error increases at 20dB/decade.
Thus the relative bound 1, >lID, Il is greater than 1 for @>50.

To motivate the choice of weighting functions we consider the requirement for steady error
reduction and consequences for integral action in each loop. From the discussion in Blight,
Gangsaas and Richardson [1] we see such requirements are apparent in LQG/LTR type designs but
the application is much more difficult to implement than using the present method. To balance the
requirements for integral action with loop crossover at w=10 we performed a simple tradeoff with

PI type weighting in each channel to obtain the desired loop shape. The weighting considered has
the form:

1—!;+1 0
WI(S) = ' 1
0 —+1
;S
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A value of ‘ti=.7 was chosen.

It became apparent that from the perspective of multiplicative model errors at the outputs the high
frequency attenuation needed to be increased. We therefore added first order rolloff in terms of the

lead/lag weights:
T,8+1
| ps+1
Wals) = Tzs+1
Tps+1

where values of 8 and 80. were chosen for the lead zero, resp. lag pole. This permitted increased
rolloff in the region after cutoff without serious attenuation near the desired cutoff frequency. The
shaped loop gain in dispiayed in Figure 4.25.

Loop Gains for Shaped Worst Case
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Figure 4.25: Desired loop shape with weightings.

The shaped transfer function dynamics are summarized in terms of the transmission poles and
zeros in Table 4.1.
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Table 4.1: Shaped Transmission Poles and Zeros

poles Zeros
- 80. 77.196225
- 80. - 78.196225
0 - 8.
0 - 8.
- 29.556023 -0.7
6.7912262 - 0.7

- 0.2004232 + 1.4435674i
- 0.2004232 - 1.4435674i

For this loop shape we compute the optimal stability margin as €5,,=0.2772. Then we choose the
desired suboptimal level for controller synthesis as y=1/.2772. Here we take y=3.65 and
synthesize the suboptimal robust control for the weighted plant. Incorporating the weighting
functions into the controller K(s) we obtain the achieved loop gains as displayed in Figure 4.26. It
can be seen that the specifications given in texms of relative model uncertainty at the outputs

(multiplicative errors) together with performance specification for integral action and cross over
frequency at least w=10 have been achieved.
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Figure 4.26: Acheived Loop Gains for shaped worst case design.




To check the assumptions implicit in the minimax/maximin equivalence for parametric robustness

we evaluate the stability margin achieved by the worst case design at the nominal, stable
configuration of k=0 (the other extreme of the parameter variation in this case). The resulting

stability margin achieved is €5;,=0.2583 as seen from Figure 4.27.

Achieved Stability Margin for stable config
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Finally, to illustrate the effect of the worst case design on the nominal, stabel aircraft configuration
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Figure 4.27: Achieved Stability Margin @k=0.

we display the achieved loop gains for this case in Figure 4.28.
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Figure 4.28: Achieved Loop Gains for stable configuration.




The closed loop system poles for the nominal stable configuration with the control as designed
above can be computed as:

Closed Loop Poles for nominal (stable) aircraft
- 1819.4462
-270.14803 + 29.621817i
-270.14803 - 29.621817i
- 78.048361
- 7.222071 + 25.3900961
- 7.222071 - 25.3900961
- 12.391449
- 7.4595557
- 272803007
- 2.0285601
- 0.7878369
-(0.6121988

5. Conclusions and Directions for Future Research

5.1. Nonlinear Control Design for Robust Flight Control

In order to achieve enhanced maneuverability and efficiency, future aircraft will operate close to or
even beyond open loop stability boundaries. For example, reduction of horizontal tail size in order
to achieve reduced fuel consumption results in loss of longitudinal static stability for sufficiently aft
c.g. locations [1]. Fighter aircraft may operate at high angle of attack or at high roll rate where
nonlinear effects cause loss of stability 16]. Such aircraft require augmentation by automatic flight
control systems which induce the desired handling qualitites over the full range of flight

conditions.

Feedback controllers for these applications are typically conceived to be linear, perhaps with some
form of gain scheduling. However, when operating near stability boundaries the system dynamics
are nonlinear in an essential way. It is well known, for instance, that a linear perturbation model is
a reliable indicator of stability only if none of its eigenvalues lie on the imaginary axis {9].
Otherwise nonlinear effects are crucial. Some rccent studies in flight mechanics characterize
aircraft loss of stability in terms of elementary local bifucations [10-11]. Thus, divergence

instability is typically associated with a saddle-node t*“nrcation and a change in the equilibrium
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point structure while flutter is associated with a Hopf bifurcation and the appearance of a limit

cycle. Such phenomenon, of course, are fundamentally nonlinear.

Unfortunately, these studies deal almost exclusively with open loop dynamics under parameter
variation and very little general theory is availiable conceming the design of feedback controls near
bifurcation points. We can, however, draw some obvious inferences although our remarks will be
confined to static instability (divergence). It is known that linear feedback can be used to stabilize a
divergence instability. McRuer et al [4] note that in aircraft such stabilization requires high gain,
wide bandwidih control. Such controllers may be sensitive to actuator saturation and excitation of
high frequency parasitics. It is our view that  these problems assume exagerated proportions

because of the attemipt to foree a lincar solution on an intrinsically nonlinear problem.

Note also that when the system operates near a saddle-node bifurcation point, the stable
cquilibrium point is necessarily close to the boundary of the domain of attraction (the neighboring
unstable equilibrium is on the boundary.) It follows that the system may be unacceptably sensitive
o external disturbances. Performance can sometimes be dramatically improved by nonlincar
feedback. In fact, the substantial improvement obtained by Gairard and Jordan [6] in recovery

trom stall by using a nonlinear feedback can be explained by this observation.

Techniques for the design of nonlinear feedback control systems are still very limited and tend to
be tatlored to specific situations. The most promising approaches appear to be those associated
with methods of exact linearization. This procedure is based on some carly work of Krener [44)
and others demonstrating that a large class of state equation models for nonlinear dynamical
systems can be exactly linearized by a combination of nonlinear state feedback and a nonlinear
transformation of stawe coordinates. Once the system is linearized all methods of control system
design for linear dynamics become applicable. The inverse transformation is then implemented in
conjunction with the linear compensator so that the overall controller is nonlincar. Meyer and his
coworkers have articulated the application of these ideas to certain problems in flight control as an

alternative to gain scheduling.

Another approach termed input-output linearization has evolved from work of Hirschorn [45). The
notion of input-output lincarization as developed by Kravaris and Chung [46]] is based on the so-
called Byrnes-Isidori canonical form [47] for nonlinear systems. This approach produces a linear
nput output model and may have certain advantages especially when frequency domain design

methods are to be used for compensator design. The attractiveness of such methods is further
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enhanced by recent frequency domain formulations of Hopf bifurcation analysis [12] with
application to multivariable nonlinear control system analysis {54].

Although these methods may be formally applied at or near bifurcation points such applications
have not been studied. It is interesting to note that another approach to linearization which has
generated some interest in recent years, the extended linearization method of Rugh {59] fails in an
obvious way at bifurcation points.

The essentials of the approach are most easily understood in terms of the single input single output
problem. Consider a nonlinear dynamical system in the form

x = f(x) + g(x)u (5.5a)
y = h(x) (5.5b)

where f, g are smooth vector fields on R™ and h is a smooth function mapping R® — R. Now,
differentiate (5.5b) to obtain

§ =90 (5x) + glou) 5.6)

If the scalar coefficient of u is zero, we differentiate (5.6) and continue in this way until a nonzero
coefficient first appears.

This process can be succinctly described by introducing some conventional notation of differential
geometry and analytical mechanics. We need only the concept of Lie derivative. First, the Lie
(directional) derivative of the scalar function h with respect to the vector field f is defined as

Lith) =(dh,f) = g% f(x) 5.7

Since the Lie derivative is itself a scalar function on R, higher order derivatives may be
successively defined

L) = LALE () = (L ), £) (5.8)

Now, (5.6) can be written




y =(dh, f ) + (dh, g )u = Lg(h) + Lg(h)u (5.9
If Lg(h) =0, then differentiate (5.9) to obtain

¥ = (dLg(h),f ) + (dLg(h),g Ju = LA(h) + Lg(Lth)u (5.10)
If Lg(Lg(h)) =0, then differentiate (5.10). If Lg(LY '(h) = 0 for k = 1,.., -1, but Lg(L} '(h)) # 0,

then the process ends with

dr -1
E} = L{(h) + Lg(L] ' (h)u (5.11)

The number r is called the “relative degree” or “characteristic number” of (5.5). Note that if we
define the coordinates ze Rf

=Ly, k=L
then Equations (5.9) through (5.11) can be written

010.0 0
0010. 0
7= 010 |lz+} . (5.12)
S | 0
00. .0

o(x) + p(x)u

where

a(x) = L{(h), and p(x) = Lg(L{ ' (h))

Formally, the system (5.12) may be linearized and simultaneously stabilized in the input-output
sense as follows. Choose the control

u = D(x,v) = (v - 6(x))/p(x) (5.13)
where
r-1 .
o(x) = Zﬁka (h) + Ly(h), p(x) = Lg(L;'l(h))
k=0
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and Bk, k = 0,.., r-1 are real numbers corresponding to the coefficients of any Hurwitz
polynomial. Then the relationship between the new control input v and the output y is defined by
the linear r-dimensional (completely controllable and observable, companion form) system

- 0 1 0. 0 T [~ 0]
0O 010 . 0
7= 01 0 |z4; . yv (5.14a)
.o o1 0
L Bo B . . Br1 A 1
y=[{10..0]z (5.14b)

These calculations are readily extended to MIMO case [55, 56].

The importance of this construction is that linear dynamic compensators may now be designed for
the resulting linear sysiem using any applicable linear method. The exact linearization is global if
the transformations admit unbounded control u; otherwise, the linearization is local. However, it
should be emphasized that unlike traditional linearization about a fixed operating point or trim
condition (based formally on Taylor series expansion) the approach just described linearizes the
system dynamics about a nominal model. Open questions in the available theory for such
linearization includes the effect of such control constraints and parametric uncertainty.

5.2. Linear Mode Design and Critical Nonlinear Dynamics

For the limited scope of the phase 1 study we have focused on computational studies for relaxed
static stability aircraft where the parametric uncertainty is related to the shift of CG during flight
operations. The underlying nonlinear dynamics illustrate the role of parameters in determining the
dynamic properties of the resulting family of linear perturbation models. What is evident from our
analysis and numerical computations so far is the significance of the transmission zeros to this
parameter. Certainly in the region which we considered for variation of x the transmission zero are
relatively insensitive by comparison with the system poles. However, this does change as the
variation of x is extended to approach the static bifurcation point for the system equilibria. It has
been shown that in feedback systems static bifurcation is associated with the passing of a real zero
through the origin. This differs from the conventional case in dynamical sytem theory where static
bifurcation is associated with a real eigenvalue passing through the origin. In this region we expect
the sensitivity of the system optimal stability margin to be significant, indicating a difficult control
design problem. It is our conjecture that part of the limitation evidenced in such regions comes
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from the linear mode design approach where we are essentially trying to design a single fixed (and
therefore robust) linear compensator for the linear plant. The requirement for stability of the linear
mode design has the implicit objective to maintain the system state near the desired equilibrium or
trim condition. Near a bifurcation of the equilibria under parametric variation we expect the
domain of attraction to change depending on the type of bifurcation. Clearly, the underlying
nonlinear dynamics will be significant for control of the system dynamics in such operating

regimes.

Such considerations have lead engineers to develop various methods for gain scheduling--most of
which are ad hoc. On the other hand the previous discussion on feedback linearizing control for

certain nonlinear systems provides a complete analytical basis for control design based on
linearization about a nominal system model rather than about an equilibrium operating point in the
system state space. Despite the abstract basis for the theory of feedback linearization, its practical
application provides an analytical basis for gain scheduling the linear mode design. Both methods
are essentially model-based control design schemes and therefore robustness considerations are
important in apolications. Flight control systems often employ gain scheduling with respect to
various measurable system parameters (e.g. velocities, angle of attack, etc.) for operation in
nonlinear regimes. It is our view that methods for integrated design of multiloop controllers based
on methods related to feedback linearization may provide enhanced capabilities for such high
performance flight control problems as recovery from stall. In the Phase 2 effort we will propose
to study methods for robust design and implementation of such nonlinear control laws.

5.3. Research Directions for multiparameter worst case design

The worst case design procedure based on the maximin design is computationally feasible if the
number of real parameters is small since the evaluation of the optimal controller dependence on a is
simple. It is therefore suggested that in applications the plant be modeled with the less significant
real parametric uncertainty embedded in the unstructered uncertainty bounds. This is the practical
aspect of the methods we will propose to investigate and develop in Phase 2: that we seek a
pragmatic approach to implement the available methods in optimization based approachs to robust
control synthesis for structured uncertainty together with more well developed methods for
structured uncertainty. We believe that this blend can be developed with respect to a significant
class of flight control problems where dynamic degrees of freedom are relativly small.

The focus of the Phase 1 study has been on developing a method for robust stabilization of models

subject to combined real parametric uncertainty and parasitic (unmodeled) dynamics. Our efforts
were directed toward eliminating the source of conservatism abundant in such design methods
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while retaining the essential feature of robust design in the engineering context. We feel that the
optimal worst case design methods described above addresses these concerns in principle. The
result however, is a computationally difficult problem in the general case. Our approach in the
benchmark designs has been pragmatic. We also believe that the essential features of the nonlinear
dynamics of flight control designs will serve to restrict consideration of the variation of physically
based real parameters which effect the aircraft dynamics. Nevertheless, we feel that a focus of the
Phase 2 proposal should be in the area of algorithm development for the minimax (worst case)
design for realistic combination of structured uncertainty (arising from physical parameters) and
unstructured uncertainty (arising from unmodeled dynamics).

We also feel that the entropy interpretation of the results of Bernstein and Haddad --and therefore
the results obtained in Yeh et al [41] -- may offer additional perspectives on how inherent
conservatism of such designs can be reduced. The analysis achieved to date represents only a
special case for these problems.

The loop shaping procedure has been shown to be effective with many desireable properties.
However, the choice of loop shape has not been adequately addressed. In particular, the
modification of loop shape to incorporate knowledge about system uncertainties, the question of
how loop shape affects €nax, and the role and use of loop shaping for decoupling and scaling are
all potentially fruitful directions of inquiry.
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AN He, DESIGN PROCEDURE USING ROBUST STABILIZATION

OF NORMALIZED COPRIME FACTORS

by

Duncan McFarlane ! and Keith Glover t

t Department of Engineering, University of Cambridge,
Trumpington Street, Cambridge, CB2 1PZ, United Kingdom.

ABSTRACT - A two stage H, based design procedure has
been described which uses a normalized coprime factor approach
to robust stabilization of linear systems. A loop-shaping pro-
cedure 1s also incorporated to allowthespecification of perfor-
mance characteristics. Theoretical justification of this technique
is given and an outline given of the design methodology.

1. INTRODUCTION

In a number of recent papers it has been shown that H
optimization can be applied to the problem of robust stabiliza-
tion of unstructured uncertainty. (See Francis (4], and the ref-
erences therein.) This paper describes a design technique based
on the robust stabilization of a particular representation of un-
structured uncertainty, namely that of normalized ‘stable fac-
tor’ or ‘coprime factor’ perturbations. (See Vidyasagar {13), for
a suitable introduction to coprime factors, and [7] for a com-
plete solution to the normalized coprime factor robust stabiliza-
tion problem.) The design technique, which also allows perfor-
mance objectives to be incorporated, has two stages: (1) A loop
-shaping approach ‘shapes’ the nominal plant singular values to
give desired open-loop properties, and (2) The normalized co-
prime factor robust stabilization technique mentioned above 1s
used to stabilize the shaped plant.

2. THE NORMALIZED LEFT COPRIME
FACTOR ROBUSTNESS PROBLEM

We firstly summarize the main results of [6], {7] for the nor-
malized LCF robust stabilization problem. It has been shown
{14], {16 that an attractive way of representing unstructured
uncertainty in a plant is via coprime factor perturbations. That
is, if the nominal plant is

G=M"'N (2.1)
then a perturbed plant is written
Ga=(M+ayu)" (N +A4y) (2.2)

where M, N is a left coprime factorization (L.C.F.) of G, and
Ae, An are stable, unknown transfer functions representing the
uncertainty and satisfying ”[AM,AN]”w < e where ¢ > 0 (See
Fig 2.1). A design objective is then to find a feedback controller
K which stabilizes all such G4 for a given e. Following [16],
this can be rewritten in the framework of an Ho optimization
problem: Find a stabilizing concoller K such that

~1 ag-1
i ewrmnl =

)

. 2.3
K(I~GK)'M- )
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Figure 2.1 Coprime Factor Uncertainty

where K is chosen over all controllers which stabilize G. The
solution for the largest achievable € (= €ma:) is generally iter-
ative [16], but, if the left coprime factorization (LCF) of G is
normalized, meaning

Mju)M (W) + N(jw)N(jw)* = I for all w (2.4)

then it is possible to show ([6], {7]) that a maximum value of €
can be obtained by a non-iterative method, and is given by

PR 3N}

€maz = (1— ”[MvN]”H)os (2.5)

where ”o”H denotes the Hankel Norm, and €mar is called the
mazimum stability margin.

Remark 2.1 It can be simply shown that the problem in (2.3)
is equivalent to the ‘four block’ problem:

[[%]ur-errien] <o,
o0
and hence this also has a minimum solution given by (2.5).

3. LOOP SHAPING METHODS

In feedback design many performance and robust stability
objectives can be written as requirements on the maximum sin-
gular values of particular closed-loop transfer functions. The
principal idea of ‘Loop Shaping’ is that the magnitude (or max-
imum singular values) of these closed-loop transfer functions can
be directly determined (over appropriate frequency ranges) by
the singular values of the corresponding open-loop transfer func-
tion. (The reader is referred to (3] for a comprehensive introduc-
tion to loop shaping methods.)

For example, for 2 plant, G, and controller, K, if o(GK) »
1 {typically at low frequency) then




!
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F“\\\ &(GK)
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]
!
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Figure 3.1 Loop Shaping Specifications

(I - GK)™') < 1/¢(GK) (3.1)
5((I - GK)™'G) < 5(G)/2(GK) (3.2)

and if ¢(GK') < 1 (typically at high frequency) then

F(K(I - GK)™) = 7(K) (3.3)
F(GK({I - GK)™\) < 5(GK). (3.4)

For good performance we require F(J -~ GK)™!) and
F((I - GK) 'G) to be small (particularily at low fre-
quency) and for good robust stability properties we require
F(K(I - GK)"') and 5(GK(I - GK)™!) to be small (at high
frequency in particular). A typical closed-loop design specifica-
tion can therefore be illustrated as in Figure 3.1, and the desired
closed-loop behaviour can be achieved by manipulation of the
open loop gains, 5(GK'), o¢(GK).

However, this open-loop shaping approach is complicated by
the need to ensure stability of the resulting closed-loop system.
This requires that plant phase properties also be considered, and
the loop shape can be shown to be limited by such stability
requirements. This is examined in [1] for the SISO case, and in
[3] for a MIMO extension. Further, these requirements are even
more restrictive if the nominal plant has RHP poles or zeros.
{See [12] for example.}

A loop-shaping approach that is somewhat simpler from the
designers point of view is that used in the Loop Transfer Re-
covery (LTR) method in LQG design. (See (9] and (2].) In
this method, the designer specifies a desired singular value loop-
shape, and the guaranteed stability properties of the LQG com-
pensator ensure stability. LTR however, cannot systematically
deal with plants with RHP zeros (see {13]), and is limited in that
it can only guarantee performance and robust stability proper-
ties at either plant input or plant output.

The design technique that is proposed in this paper is sim-
ilar in philosophy to LTR: The designer specifies a desired loop
shape and then the ‘shaped’ plant is further compensated by a
controller using the normalized LCF robust stabilization method
of Section 2 to ensure closed-loop stability.

4. THE DESIGN PROCEDURE

4.1 Outline of the Design Procedure

We will now formally state the design procedure that was
proposed in Section 1. The objective of this approach is to in-
corporate the simple performance/robustness trade-off obtained
in loop shaping, with the guaranteed stability properties of Ho
design methods.

‘The Loop Shaping Design Procedure (LSDP)’

(1) Loop Shaping - using a precompensator, W, and/or a post-
compensator, Wy, the singular values of the nominal plant
are ‘shaped’ to give a desired open-loop shape. The nominal
plent, G, and ‘shaping functions’ W,, W, are combined to
form the ‘shaped plant’, Gs where Gs = Wa2GW,. (See
Figure §.1a.) We assume that W, and W, are such that
G5 contains ne hidden modes.

(2) Robust Stabilizgtion - a feedback controller, Ko, which ro-
bustly stabilizes the normalized left coprime factorization of
Gs, with stability margin ¢ (= v7!), is synthesised, woing
the approach outlined in Section 2. (See Figure §.1b.)

(8) The final feedback controller, K, is then constructed by com-
bining the Hy, controller, Koo, with the shaping functions, W,
and Wy such that K = W1 K W,. (Sec Figure {.1c.)

Note that, in contrast to the classical loop shaping approach,
the loop shaping here is done without explicit regard for the
nominal plant phase information. That is, closed-loop stability
requirements are disregarded at this stage. Also, the robust sta-
bilization is done without frequency weighting. The parameter ¢
can be seen as an indicator of the success of the loop shaping,
where we note by (2.5), ¢ < 1 always. A small value of € (¢ < 1)

__"‘W'—"‘GL—“WL—"

1 H

(a)
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(®)
(i) (i)
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Figure 4.1 The Design Procedure (a) Shaped Plant, (b)
Robust Stabilization, (¢) Final Controller.
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:n Stage (2] always indicates incompatibility between the speci-
fled loop shape. the nominal plant phase, and robust closed-loop
stability. Hence the loop shaping of Stage (1) is connected to
the robust stabilization of Stage {2} via the indicator .

A typical design works as follows: The designer inspects the
open-.o0p singular values of the nominal plant, and shapes these
by pre wud ‘or post compensation until nominal performance
rand possibly robust stability) specifications are met. (Recall
that the open-loop shape is related to closed-loop objectives.) A
feedback controller, K., with associated stability margin {for
the shaped planti € < €max, is then synthesized. If ¢ is small,
hen the desired performance ‘s incompatible with robust stabil-

ity requirements, and the loop shape should be adjusted accord-

ingly, and K re-evaluated. (In Section 5, the explicit depen-
dence of performance and robust stability objectives on € will be

shown - This procedure is both simple and systematic, and only

aseumes knowledge of elementary loop shaping principles oo the

part of the designer.

4.2 Comments on the Design Procedure

The foilowing comments refer to the design procedure given
in Section 4L

1. In the Loop seaping Design Procedure we have interpreted
he measure ¢ as a design indicator rather than as a specific
<abity margn for the notional perturbations on the normalized
L.CF of the sheped plant: In Section 5 we will show that any
ug controller achieving € « 1 will lead to deterioraticain
‘he achiered loop-shape com; ~~d with the specified loop shape
st iow or igh frequencies. or will imply poor robust stability

propertes otk

~tanl

e ~eiccted cross-over {requency reginn.

2. The srocedure is applicable to stable or unstable, minimum
im phase plants, provided they satisfy the mimi-
requirenent for any design - that is, there are no unstable
b mades. In particular, if a plant is non-minimum phase,
the standard performance restriciions will stiil exist in the de-
sign procedure: It 1s well known, (see {8} or [5] for example)
that the presence of a non minimum phase (RHP) zero in the
nomunal plant limits the achievable bandwidth and restricts low
frequencyv behaviemr in the Loop Shaping Nesign Procedure. a

oop sLape whiehos incompatible with these generic iostrictions
will jead to a 'small’ € value in Stage (2). To iuustrate this,
~onsifer the following example:

-1
s+’
W = k. a-onstant, as the shaping function. The shaped plant i5

Let a nominal plant be given by G = and we select

then G = WG = ::';;: By i8] we know that the closed-loop
bandwith has a practical Limit of 17 /s because of the RHP zero

at s = 1 :n G. Noting that the crossover frequency of the open-

pr ceflects the closed-loop bandwidth, we now select
four vinues of k. the largest yielding a crossover frequency that
s incompatible with the bandwidth limitations. The resulting
¢ values after Stage 120 of the Loop Shaping Design Procedure

GOp RIape

ass

k= e = 06814
k=1 ¢~ 05038
k=35 D277
k=20 ¢ - 0 00%4
The waiue of ¢ associated with k = 20 55 ectremely small,

indirating an inenmnatibie loop shape’! Thos s confirmed by

S —————————
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comparing the specified and achieved loop shapes for each case
in Figure 4.2.

In the next section, we give theoretical justification for using
the loop shaping design procedure

5. PROPERTIES OF THE DESIGN METHOD

5.1 Controller Magnitude Bounds

In the previous section we specified the desired loop shape
by W,GW,; (Fig. 4.1a), but the actual loop shape achieved is in
fact given by W, Ko W-(" at plant input (point (i}, Fig 4.1¢),
and GW, KW, at plaut output (point (ii), Fig. 4.1c). We
will now show that the degredation in the loop shape caused vy
the Hoo controiler K is limited at those frequencies where the
desired loop =hape is sufficiently large or sufficiently small:

5.1.1 Low Frequency Behaviour

At low frequency (in particular w € (0,w;)}) the deterioration
in loop shape at plant output can be obtained by companng
gl GW, K W;) with o(W,GW, ). Note that:

2(GK) = g{GW Ko W3) - o(Wi:GW, )0 (K )/c( W)
(5.1)
Sirmulanly, for loop shape deterioration at plant input we compare
c(W, K . W;G) with o(W;GW,) and we have

o KG) = c W K WG > g(WaGW) )g{ Ko )/ (W)
(5.2)
In each ¢ase, o( K ) is required to obtain a t ~ind on the dete-
rioration in the loop shape at low frequency. ° ute that the con-
dition numbers ¢l W-) and ¢(W;} are selected by the designer,
and are commonly ot order one

The {ollowing result shows that of Ko | is explicitly bounded
by functions of ¢ and g/ G ¢), the minitmum singular value of the
shaped plant. We assume here that the shaped plant Gs has
an equal number of inputs and outputs. For convenience, the

I 1

varameter, v, defined 5 7 61 will be ueed in the following
¥ Y

analysis




Theorem 5.1 Any controller, K. satisfying

<7

LA A '
o

g o J - GsKoy) ' M
11[ T

where i N, 1\:’,) 1 @ normalized LCF of Gs, also satisfies

. ibsw)) - (3P = 1)
2 Kelwin 2 e - —%5.3
VY 11+ e}(Gs(jw))) + 7’1(05(136 )

for all - such that

a(Gsizw)) 2 Vi — L.

(Lengthy proofs are omitted in this paper, and the reader
is referred to [11] for full details.)

The main implication of Theorem 5.1 i1s that the bound on
7" K« ) depends only on the selected loop shape, and the sta-
bility margin. The value of v directly determines the frequency
range over which this result is valid - a small v is desirable, as
we would expect. Further, if we consider those frequencies where
7i(Gs) > /3 — 1, we have the following asymptotic result:

Curoliary 5.2 Following the notation of Theorem 5.1, if
7 Gs ety 2 /¥~ 1, then

N 1
W Koo(jw)) 2 —====.
vyi-1

Proof: This follows immediately from equation (5.3), by noting
that @ Gstjw)) » /v? — 1 implies that ¢2(G;(jw)) > 1, and
also that 22 (Gsije v = 1)V > y2a(Gs(jw)). |

5.1.2 High Frequency Behaviour

At hugh frequency (in particular w € (w,,o0)) the deterio-
ration in plant output loop shape can be obtained by comparing
JGW, KW, ) with g{W;GW,). Note that, analogously to
{5 1) and (5.2) we have

FGK ) = 5 GW KW, ) < F(W,GW, )5 K )e(W2). (5.4)

Simmlarily. the correspondi, g deterioration in plant input
loop shape 15 obtained by comparing (W, K W;G) with
7 W, GW, where

o KRG, - 0 W KxW3G) < 6(W,GW))5( Koo )e(W)). (5.5)

Henee in each case, (K ) 1s required to obtain a bound on
the deterioration in the loop shape at high frequency. In an
analogous manuner to Theorem 5.1, we now show that 7( Ko ) is
explicitly bounded by functions of 4, and #(Gs), the maximum
singular valure of the shaped plant.

Theorem 5.3 Any controller, K .., satusfying

TR LT,
|

i
i i-G;K,,»"‘M,"h <4

>

where (N, M,, 1s a normahzed LCF of Gs, also satisfies

Ky~ Vit 11+ 7Gs()w)) + 1 5(Gs ()

——

for ali w such that
. 1
3(Gsjw)) € —m—-.
vyt -1

Again, if we consider those frequencies at which 6(Gs) <«
”\/-,}{-:1' then we have the following result:
Corollary 5.4 Follounng the notation of Theorem 5.8, if
F(Gs(jw)) € 7:';_—1, then

T Ko(wl) < /2% 0 K
Proof: This follows iinmediately from {5.6) by roung that
(G L implies °(Gs) « 1, and ~*5(Gs) < iv* -
7(Gs) < ==y implies (G G s) <

1)1/'2_ B
Remark 5.5 The approxunate results in Corollicies 52 and
5.4 show that at frequencies where g{Ggs) > 1 or FIGe) « 1.
the deterioration in the lnop shape due to K. 1s bounded by
a function of 74 (or equivalently ¢) only. Noting that v ‘small’
(implying € ‘large’) indicates a minimal deterioration in the loop
shape, it is confirmed that ¢ indicates the compatibility between
the specified loop shape and closed-loop stability requirem.uts

Remark 5.6 Note that in Theorem 0.3 it is not necessary to
assume that Gg is a square transfer function matrix Hence.
high frequency loop shape properties can be guaranteed for a
plant of any dimension.

We have shown in this section that the values of v ‘aiter
natively €) achieved in the Loop Shaping Design Procedure wall
directly affect the singular values of the H, controlier Ko,. Al
though the precise relationship between v and the shaping fuac-
tions W, and W) is not known, we have shown that a large ~
value indicates incompatibility between the selected loop shape
and the closed-loop stability reqiurements. Such an incompat-
ibility can lead to extensive deterioration in the specified loop
shape. Under such circumstances, the designer would be re-
quired to ‘relax’ the original locp shape specificacon, uno. a
more compatible loop <hape in achieved.

5.2 Using v/¢ as a Design Indicator

In Section 5.1 we evaluated bounds on the mezimum ioop
shape deterioration at low and high loop gains, for a giver ~{=
€7 1), and a specified loop shape. In this section. we take o o1
trary approach: Given any stabilizing controller. K, there exists
a frequency w,, such that

ﬁ([lﬂ(h GSK.,)"M.">W°‘ SRERIREIER

and we evaluate the minimum deterioratic.1 in loop shape that
can be expected, if any, for this 9, and examine the effect of 4

on robust stability at this frequency. We sumunarize the v e
in the following theorem

Theorem 5.7 Let ~7 1
for the normalized LCF robust stabilization probien, .o e e
(2.5).

frequency, vy, suck that

C s be the optimal wrur.
Then, for any stabihaing controder K, to -+ ise.
K,

a([ ! }(1 (:A‘h',l".u;')rj‘-n,_ N

and hence




1) There ezists ¢ perturded system

Gy =Wy (M, + Ap) N, + AN )W, !
with
<‘v_x

HAav. Smllle € Yman
brlrzes the systern. Further,

w= 177 then

which desta

‘ ,
) f mGswoi) >0,

Kot < Y U1+ @G () + vhumgi Gslie))
sl = (72 — DX Gs(jwo)) = 1

]

ana

i) of FGsijwsi) < (Y, ~ 12, then

2
~2
sman

v ¥mn = U1+ 52(Gs(jw,))

-1 -3%Gs{jw,))

-+ ‘v'
Tmin

FH,(jwali & :
FiGs(jwo))

Remark 5.8 Theorem 5.7 shows that v/¢ is a design indicator
for the entire frequency range: Firstly, if the coprime factor ro-
bust stapility is poor (that is € € 1 or v 3> 1} at a frequency
where N, and M, are of comparable size, then (' shows that
only a smali relative perturbation on ejther N, or M, is per-
mitted. However, if M, 3> N, then the notional destabilizing
perturbation could correspond to a very large relative pertur-
bation in .V,. implving that robust stability properties may in
fact be acceptable despite v > 1. However, in this case, we
have F(Gs) 1 and part (iii) of Theorem 5.7 applies, show-
ing that t‘le Ioop gain is necessarily ard undesirably increased.
Conversely. if Nf & IN,, then the notional destabilizing pertur-
bation could correspond to a very large relative perturbation in
M,. again implying that robust stability properties may in fact
be acceptable despite 4 > 1. However, in this case. we have
a/Gsi > 1 and part (ii) of Theorem 5.7 applies, showing that
+he loop gain s necessarily and undesirably decreased.

In the next section we examine the closed-loop behaviour
achieved using the Loop Shaping Design Procedure, and confirm
that the loop shaping approach gives guarantees on particular
~loced-loop objectives.

5.3 Behaviour of Standard Closed-Loop Objectives

In Section 3 we stated that a feature of the classical loop
shaping design approach is that it is possible, by open-loop sin-
gular value shaping, to ensure that a number of standard closed-
loop design objectives are ‘well behaved’. The following result
demonstrates that this 1s also the case for the Loop Shaping
Design Procedure outlined in Section 4.1:

Theorem 5.9 Let G be the nominal plant and let K
W, K W, be the associated controller obtained from the Loop
Shaping Design Procedure of Section §.1. Then

GO - GK™Y) < 43( M, 5 (W) )5(W2) (510
7l - GK)™Y) < 4&( M, )c(Wa) (5.11)
FK I -GK) 'G) < ~3(N,)e(W}) (5.12)
) +FIN,)
Fiil - Gy I 5.13
ail - GK b"gtwnz(wzi (5:13)
and
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(I - KG)™') < 14 45(V, )o(W)) (5.24)
FGI ~ KG)'K) < 1 4+ v5(M,)c(W>) (5.15)
where (N,, M,) is ¢ normalized LCF of Gs = WoGW,, and

c(e) denotes the condition number.

Remark 5.10 Note that because (N,, M,) is a normalized LCF
of Gs we have that 7(IV,) < 1 and 5(M,) < 1 for all frequen-
cies. Noting also that v has a finite valu= (typically 1 < vy < 5in
practice), and that the shaping (unctions are selected by the
designer, then it can be seen that. by (5.10) - (5.15), all of
the closed-loop objectives are guaranteed to have bounded mag-
nitude. We say that in this case the objectives are well be-
haved. For the simple case of W, = [ and W, = [ it can
be readily seen that in (5.10) - (5.13), N, (= N) and M,
(= M) provide frequency weighting. The frequency shapes
are ‘natural’ for many problems: for example at frequencies
where (M,) is small (indicating a nominal plant pole near the
imaginary axis), then #((J - GK)~') and 7(K(I - GK)™!)
are small. So the hehaviour of the standard closed-loop transfer
functions (I - GK)~!, K(I - GK)™', K(I ~ GK)™'G, and
(I - GK)™'G is compatible with sensible closed-loop design.

5.4 Bounds on the Normalized Coprime Factors

. We now state a technical result which demonstrates that
7(N,) and 7(M,} are related to the nominal plant G and the
shaping functions W) and Ws.

Lemma 5.11 Let the shaped plant, Gs

W,oGYW,, have o

normalized LCF given by (N,,Al) Then
- F(W,Gwy) \'*
Ny= (212770 .
7(N) <1+az(wzcwl>) (5.10)
and
: 1 1/2
o) - (wewy) @

Remark 5.12 The value of this Lemma is that the bounds
on the closed-loop objectives in Theorem 5.9 can be rewntten
in terms of v, G, W,, and W, only. It can now be clearly
seen how the loop shaping influences the closed-loop properties.
Noting that if g(W2GW)) > 1 then G(M,) ~ 1/a(W,GW,),
7(N,) ~ 1 and that if 5(W,GW,;) < 1 then 5(M,) ~ 1,
F(N,) ~ §(W,GW,), then the bounds in Theorem 5.9 can be
re-evaluated to show the effects of W, and W, on closed-loop
behaviour in frequency regions of high and low loop gaix.

6. SUMMARY OF RESULTS

In this paper we have incorporated the normalized LCF
robust stabilization problem into a loop shaping based design
technique. This enables both performance and robust stability
objectives to be traded-off, and preserves the exact solution as-
sociated with this particular Hoc pichlem. The design method is
straightforward and systematic, incorporating only the simpler
aspects of ‘classical’ loop shaping. The normalized LCF robust
stabilization problem has been shown to be particularily well
suited for this approach because the Ho, controlier synthesized
causes only a limited deterioration of the specified loop shape.
Coprime factor model reduction techniques can be simply incor-
porated into this framework. As a final comment, it should be
noted that the Loop Shaping Design Procedure i restricted to a
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particular set of Hoo objectives. However, it can be shown that
the design technique yields simple and effective controllers. (See
[10] and {11].)
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Abstract

The problem of maintaining the Ho, norm of a standard closed loop below a
prespecified tolerance level whilst maximizing an entropy integral (at a point
in the right balf plane) is posed and solved by way of the equivalent etror
system distance problem. All error systems with infinity norm below the
tolerance level are parametrized as the linear fractional map of an all pass
matrix and an arbitrary stable contraction. We derive the maximum entropy
choice for the contraction and a value for the maximum estropy. For the
maximum entropy at infinity, it is proved that the arbitrary contraction must
he set to zero (the ‘central’ solution); the maximum entropy in this case is
an expliait formula in terms of the realization of the error system. Some
motivational remarks are made and links between entropy, H; norms and H;
optimal control are given.

Notation
The open right balf plane.

R (Prefix) Real-rational.

RH, Hardy space of real-rational transfer function
matrices analytic and square-integrable on
vertical lines 1n the right-half plane.

RH, Hardy space of real-rational transfer function
matrices analytic and bounded in
the right half plane.

G* := G(-3)T, the parahermitian conjugate.

o(G) = 2/*(G*G), the i** singular value of G.

r %

4G, =& Trace(G‘(ju)G(ju))dw] , Hy-gorm.

1Gllee = 3up, Omae (G(jw)}, Heo—norm.

X = Ric ( _CA.C '_BAB.') ** 13 the stabilizing solution of the Riccati equation
XA +A'X~-XBB'X+C'C=0

me Denotes maximum entropy.

" Jopt Denotes H,, optimal.

{In, Denotes H, optimal.

(848)

A square transfer function matnx G(s) is said to be all pass if

= D+ C(sI - A)-'B, state-space realization.

G (ju)G(yw) = I, Vw.

The Laplace transform variable s will be suppressed to keep typography sim-
ple. Dependence of transfer functions on s is understood.

I. Introduction

This paper is concerned with suboptimal H,, control with
a mazimum entropy criterion. The theory of optimal H,, con-
trol has received much attention over recent years; for full de-
tails the interested reader is referred to Frandis [6] and the refer-
ences therein. Figure 1 illustrates the usual configuration, where
the ‘standard plant’ P, consisting of the actual plant, suitable
weighting functions and interconnections, maps exogenous in-
Puts w and control inputs u to controlled outputs z and mea-
sured outputs y. As is usual in He control problems, we assume

that
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w z
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Figure 1. The standard H,, configuration.

The closed loop transfer function matrix G from w to z is
given by the linear fractional map

G = F(P,K)

=P,, +P,,KI-P,,K)"'P,, (1)
of the appropriately partitioned standard plant P and the con-
troller K. The optimal H,, control problem is to find a stabi-
lizing controller K,,, which minimizes the infinity-norm of this
transfer function i.e., K,,, satisfies

inf{|F(P,K)[lo : K stabilizes P} := v,
= “F(PvKopt)"m~ (2)

Motivated by the belief that optimal H,, control is not always
appropriate we consider here the suboptimal problem obtained
by relaxing the infimum in {2} to the bound

I7(P, K}l < v (3)
where ¥ > 7,p:. In general, there is a class of controllers which

satisfy this bound; such nonuniqueness is dealt wiin in this paper

by specifying that the entropy of the closed loop transfer function

must be maximized.

The entropy is defined as follows. For any transfer function
matrix G which satisfies |G|l < 7 the entropy of G at a point
s, € C, is defined by

I(G;i7: %)

T tnldet(t -+ G GuyG )

@

[ Re s, ]’
|so — jwi

(4)
This definition is equivalent to that of Arov and Krein [1], {2]
except for an extra Re s, term to ensure non-zero entropy when
8, — o0o. It is easily seen that the entropy is well-defined (since
|Glle < v implies 0 £ I - v 'G*(jw)G(jw) < T ) and non-
positive; that 1(G; v: s,) = 0 if and only if G = 0; and that the
entropy of G is invariant under unitary scaling of G
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Our maxunum entropy Ho control problem s then:
Find, out of all controllers K which stabilize P and satisfy

FP K. < 9 )
the K which mazrimizes the entropy 1{G: v, 3, ) of the closed loop
transfer function matrnz G = F{P,K) at a point s, € C, .

Maximum entropy has been studied in a wide variety of
contexts; its applications to extension problems (Arov and Krein
‘1, |2]) and to contractive interpolants (Dym and Gohberg [4],
I3]) are pertinent here - we use an adaptation of the method
of {2]. The use of maximum entropy in Ho control has been
considered by Limebeer and Hung [9] for the ‘one-block case’
where both P,, and P, are square. No :uch assumptions are
made here, the analvsis is valid for ‘one-,’ ‘two~," and ‘four-
block’ problems.

As with optimal H,, problems (see [6]) we approach the
problem by reducing our original problem to a ‘distance prob-
lem’ . To do this, we use the parametrization of all stabilizing
controllers of Youla et al. [12] to reduce (5) to the equivalent
model-matching problem of finding Q € RH,, such that

”Tx + T, QT3 “m <7 (6)

and then exploit the unitary invariance of the H,, norm to re-
duce (6) to the distance problem

R,, R-n > < ~
. , QeRH, 7
!(Rq, R.+Q)| " @ @)
where R = ;;: g;: ) is antistable and is known in terms of

the standard plant P.

If we define the error system E by
_(Ri Ri

EB= (&, R,:+Q) ®)
we know that I(G;v;3s,) = I(E; v; s, ) because entropy is unitar-
ily invariant, therefore the closed loop transfer function G and
the error system E have the same entropy, allowing us to solve
our original closed loop problem (5) by solving the following error
system distance problem:

Find the error system E as defined in equation (8) which satisfies
|Elle < v and mazimizes I{E; v;s,).

The arrangement of the paper is as follows. In the next
section we briefly motivate H,, control and maximum entropy.
Section III contains the main resuits. By parametrizing all solu-
tions of the error system distance problem we are able to derive
the unique maximum entrcpy solution together with a value for
.o vutrop, This is firstiy done for tue gencral case of entropy at
any s, € C, and then for the important special case of 5, — 0o.
This latter case yields particularly explicit and appealing results.
Proofs of certain lemmas have been relegated to the appendix
whenever the inclusion of the proof in the main body of the text
would be int. asive.

I1. Motivation

Here we briefly state some relevant background details. Re-
call that we want our controller to stabilize P and keep the
infinity-norm of the closed loop F(P,K) below a level 4 (where
Y > Yap1)- Such control problems lead to a class of possible con-
trollers and so there is scope for another criterion. Qur approach
13 to use the controller which maximizes the closed loop entropy.
The closed loop entropy (4) is a useful measure of how close
G = F{P,K) is to the worst case of G* (Jw)G(jw) = ¥*1 Vuw,
where the bound is achieved at every frequency, for in this case
the entropy 18 —~2c.

As G noves away from this worst case towards G = 0
the entropy becomes finite and decreases in magnitude until at
G = 0 the entropy eqnals zero. Maximizing the entropy at

any particular v is an effective way of driving G away from the
G (jw)G(jw) = 471, Yw, case towards the more desirable G = 0
case. Of course, our standard plant must be stabilized as well.
Furthermore, if we rewrite the entropy as

(Gmis) = 2 [ S it - acpen ||
v 27 J. - ) sy = jwl

(9

it is clear that all the singular values 0,{G’ of G are inciudeq,

unlike the infinity norm whi~h depends only on the largest siu-

gular value.

The term [(Re 3,)/lso — jw|]® in the entropy integrai s a
frequency weighting with a shape dependent on the position of
the point 3, in the right half plane. In order to cbtain real-
rational controllers s, should be a real number; allowing s, — x
makes the frequency weighting equal to unity for all frequencies,
a notable special case we will return to later.

An interesting link with the H, norm is provided by the
following lemma.

Lemma 2.1. For any G which satisfies ||Glle < 7 we have
(i) (=L(Giv50)}'* > IG(Re 50)/(s0 + 9){
(i) {-I{(G;v; <) }'/? 2 ||Gll, tf G is strictly proper
and equality in both cases is achieved when 4 — oc

Proof: Appendix. AAL

Part (i) of this lemma shows us that the square root of the
magnitude of the entropy at s, is an upper bound on a frequency
weighted H, norm, whilst part (i1) is a similar result for the ex
tropy at infinity and the usual {unweighted) H, norm, if it exists

In both (i) and (ii), relaxing the H, norm constraint entireiy
by allowing 7 — oo gives equality. In other words, the frequency
weighted (respectively unweighted) H, norm minimization prob-
lem is exactly the maximum entropy at s, (resp. at co) prob-
lem, with ¥ — oo. Thus the imposition of the maximum eniropy
constraint allows us to use v to trade off between H,, optimai
(7 = 7op:) and H, optimal (v — o) solutions.

III. Derivation of the maximum
entropy solution

In this section we solve the following maximum entropy dis-
tance problem, as posed earlier.

hitd B} i

Let s, €C, and

R R
R ="*1-m2l ( 11 n) (10
pal R’n R'n )
be given, where
R'€RHw, mi 2p, p 2m,.

Define the error system E by

E:=<R R”-\) Q < RH.

R’n R')J‘V‘Q_,

and let

Yopt = i’lf{llE!fc: : Q € T‘:Hx} 1oy

Then for ¥ > 7,,,. find Q € RH, such that |E!'_ « - ami th
entropy I(E;v:s,) 1s mazimized
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We have seen that this problem is equivalent to finding a
stabilizing controller K which keeps [ (P, K)||o < 7 and max-
imizes the closed loop entropy.

Solution proceeds by firstly parametrizing all possible E
which satisfy the bound [|[E{l, < ¥. Ball and Cohen [3] pro-
vide such a parametrization in terms of a linear fractional map
of a J-unistery matrix and an arbitrary, stable contraction ®
(that is, ¥ € RH,, and ||®|l < 1), but it is more convenient
to use the parametrization of Glover and Doyle [8] in terms of
the linear fractional map of an all pass matrix and an arbitrary,
stable contraction ®. By adaptiug tie method of {2] we are able
to derive the unique choice of ® which maximizes the entropy
and a value for the maximum entropy, for both the general case
of s, € C, and when s, — oo.

I11.1 The general case

Here we solve the maximum entropy distance problem for
arbitrary s, € C, and E proper, but not necessarily strictly
proper. The class of error systems E over which the entropy
must be maximized is parametrized in the following lemma.
Lemma 3.1. (8] All solutions

™ -P2 n
E= p1-m3l R’“ R, .
mal R',, R’22+Q
with
R, Q € RH,, m, 2 pa, 2 My,

to the distance problem ||Ell,, <~ where v > ~,,,, are given by:

E = yF(Rae + Qas», ¥), {13)
where m-p 72
—m 0 0
PR mi( 0 Q), & cRH,, [®[a <1
Also,
R’ﬂﬂ -‘- Q‘C
™ n
= Pl ([Rn + Qu]n [Ru + Qaa}ll ) (14)
mql [R" + QCH]“ [Rﬂl + Qau]iz
™i-h <} h:""l "_‘3
pi-mat { T Ry, 'Ry, R,, 0
= mal 7 'Ry, 7‘l(an + Qn) R,, + Q:.\ Q:A
my-pal R;, Rs, + Qs. Ryy + Qi Qi
P2l 0 Qn Qu Qu
. (15)

Furthcr, R:y vQIJ € RHQI Rnd + in w a"“ pass, Qll(w) = 0
0nd |Qu Jlw < 1.

State space realizations of R;; and Q,; are available in [8],
in terms of the realization of (:;: :;:) and the solutions to two

ajgebraic Riccati eq. .tions. In this section we will not peed these
realizations.

The next lemma relates the entrop v of the linear fractional
map of an all pass matrix J and an arbitrary stable contraction
¥ to the entropy of ¥ itself.

Lemma 3.2. Suppose J = (372 1%') is all pass, ¥ € RH.,

In In

| ¥l <1 and det(I-J,,¥) is a unit in RH,,. Then

IGF3,¥)ivise) =Y HW L5s) + v 13,0515 90)
— 7 (Re sg )in|det(T — J,,(5,)¥(s,))|.  (16)

Proof: Throughout this proof take s = jw. The assumption
that det(I—-J;,¥) is a unit in RH,, together with the all pass
nature of J ensures that (Redheffer [10})

[1FJ.®)] W FQ, ) <A (17
so the entrepy My F(J, ¥); v:s,) is well defined. Using
I (gl (jw) =1 (18)
in block~partitioned form, it is straightforward to show that
[-y7" [y F3,9)) [(F(3, )]
=3, I-3,9)" " I-¥ ¥ (1-3,,%)" 7], .(19)

From this, and the fact that for any square real-rational transfer
function matrix G

In|det(G" G)| = In|det(G)} + In|det(G")| = 2 In|det(G)|, (20}
we obtain
In|det(I - v~* [yF (3, ¥)]" [yF (I, ¥)))|
= In|det(I - ¥" )| + In|det(J;,1,,)| — 2 In|det(X - J,, ®)|.
(21)
Substituting this into the definition of I{(vF(J, ¥);4; s, ) and us-

ing the {1,1) block of (18) to write J;,J,, =1-17},J,,, Vs = juw,
it follows that
I F (I, E)i780) = Y I(¥; L s0) + 1 111515 8)
e . i Res, 17
I /:w In|det(1 - 3,5 (ju) ¥ (jw)| ['80 _M]
(22)
By assumption, det(I ~ J,,¥) is a unit in RH,,, which per-
mits the use of Poisson’s Integral Theorem (Rudin {11}, p343) to
evaluate the integral in (22), giving
I0F(3,9)75) = Y HT 15 ) + 7' 1{31515s0)
— 7' (Re s, )injdet(I - J,, (s, )¥(s0))|  (23)

ALA

We are now in a position to derive the unique, stable, con-
tractive P in the parametrizatioa of all error systems which max-
imizes the entropy I(E;~; s, ).

as claimed.

Theorem 3.3. Consider the class of error systems E which sat-
isfy the condition ||E]j., < v as parametnzed in Lemma 3.1 by

0 0

E=7}.(R-J+Quan(0 &

>)‘ ® € RH., ,[|®]l, <1. (29

Then the entropy I(E; v:5,) attains its mazimum over this class
of E with the unique choice

® = Q. (%) (25)
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Proof: Here we adapt the proof in [2] to the present setting.
l»mma 3 ! gives all errar systems in the form (24), where R, +
Waa 15 a.. pass. Also,

det(I = [Rue + Quals (g f{,)) = det(I - Q. #)

which is a unit in RH,, because both Q,, and ® are in RH,,
with |Quifl < 1 and ||®]lw < 1 (Lemma 3.1). Hence we may
apply Lemma 3.2 to E to obtain

IE: vs) = Y& 1 %) + vV H{{[Rea + Qealiri 15 5)
— 7 (Re s,)Inldet(I — Q, (3 )®(s.))}- (25)

If Q,{s0) =0 then
KE;v:s5,) =7V H®: Lse) + YI([Roo + Qualisi1ise)  (26)

which is clearly maximized by the unique choice @ = 0 =
Q:,(s:), and there is nothing more to prove. So, henceforth
in this proof assume Q,,(s,) # 0.

/

Define the constant matrix H = (:;: :;:) by

_Q:.(So)

_ (1- Q:Asu)cz..(s,))'“)
H= (u S Q(50)Q: (50)) 7

Qc . (30)

(27)
where ( - }*/? denotes Hermitian square root. It is easy to verify
that H is unitary and that

det(I— H,, ®(s)) = det(I -~ Q,, (3, )P(s))
which is a unit in RH, .

Let us map the unit ball in RH,, onto itself by the linear
fractional map

$=FH, %), ®eRH,, |PIlo <1 (28)

Note that this maps ® = Q;,(s,) onto & = 0.

Lemma 3.2 is applicable:

Udilis,) =1(P;1;50) + Q7 (30 )i 1530)
— (Re s, )injdet(I - Q,.(s0)®(s))l  (29)

Use this together with (25) to relate the entropy of E to the
entropy of &:

KE;vs,) = v I($;1;3)
-+ _IQI([Ru + Qu]“ y 1;30) - 771(Q:4("°); 1;30)! (30)
from which it is immediate that I(E; v; s, ) is maximized by the

unique choice & = 0. But & = 0 «— & = Q;,(s,) from above,
and the theorem is proved. AAA

Denote maximum entropy quantities by (- Jp g. An expres-
sion for the maximum entropy follows with ease from the above
proof.

Corollary 3.4.

HEwg;vis)
= Y[Rt + Qualiii 1580) = YI(Q;, (30); 1; 35) (31)
= 4" (Re s,){In|det(R;, (s,))| + Injdet(Q,,(s,))|
= (1/2)Inldet(T - Q7 (3)Quu(30))1}- (32)
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Proof:  Equation (31) follows immediately from equation (30)
on setting ® = 0. To show (32), recall that R., + Q,, is all
pass i.e.,

(Ras + Qaa) (Roe + Qaa) =1,
The (1,1) block of this gives, Vs = jw,
I- [Ru + Qd!]:x [Ru + Qu]n

= [Rlc + Qna];; [Rua + Qau]ll \,34/‘
so that, along the imaginary axis,

Vs = juw. (33)

Inidet(I — [Raa + Quali, [Roa + Qaalii |
= 2 In{det[R,, + Q.. 5] {25)
= 2 In|det(R], )] + 2 In|det(Q.,,)], (36)

where (36) follows from (35) on examination of the structure of
R,. + Q.. in Lemma 3.1.

Substituting (36) into the definition of entropy, we see that
2 o
PI(Ras + Quuliiition) = 2 [ {inidee(R, o)

32
Res VoL am
]30 "J“"IJ '

+ In|det(Q., (w))I} [

Since R3, and Q,; are units in RHa {8}, Possorn’s integ:al
theorem may be used to evaluate (37) as

TH[Ras + Qaclisi1is0) = 7" (Re o) (Injdet(R;, (5 )
+inldet(Q,, (so))]) . (38)

The second term in (31) is

~7 I(Qee(50); 1530)

2 co R o 2
= - Ftnldet(1 - Quis@ue [ [FE] 4
“ —w Lifs T
= —g—rln[det(l — Qu(50)Q: (30))] 7. (Re 5. )
and this with (38) gives (32). FAVAYAN

I11.2 Entropy at infinity
We turn our attention in this section to the impcrtant spe-
cial case which occurs when s, — co along the real axis. The
entropy at infinity of G, (|G|l € 7) is then

HGimioo) = L [ tnldet(1 - 116" )G dw (39

which is finite if G is strictly proper. For our problem, where we
maximize the entropy of the error system E, this means that
the maximum entropy at infinity is finite if Ey g i+ s:rictly
proper; this occurs when R in the distance problem i3} is
strictly proper, which in turn occurs when P,, /x} - - o the
standard configuration of figure 1. This corresponds tc 6o {rect

feedthrough terms from the exogenous inputs w to ¢t i'ed
outputs z.

The results for the maximum entropy problem at ir-firotv a: -
particularly simple. The maximum entropy sol:tw. | Lo
by setting the arbitrary stable contraction & i .. S

choosing the ‘central solution’ out of the set of poss.ble E and
an explicit formula for the maximum entropy 1s deriven -+ orins
of the state space realizations inherent in the saini.- . ae
distance problem of Lemma 3.1; these state sjace rec, caiains
are stated in the nex* lemma




Lemma 3.5. (8] Consider the distance problem of Lemma 3.1
in the case R(o0) = 0. Suppose R has a realization

I my-py »

(A LB__ B
p1-m3l C' 0 0 :
mat \Ca 0 0

Then R,, + Q,. in the parametrization of all solutions to the
distance problem  [|E[lo < ¥ in Lemma 3.1 has a realization

R = (40)

A|B
Ron + in - (é D) (41)
where
- A 0
A'z(o A)
B'= ‘7"/’8\ ‘7"“8, —-7"/’XC; 0
’ 0 ~+-3/3Z2-°YB, ~tCy y-Z-C;
vHC, 0
&o| "G —yrcx
= _.’-JIZB:Y 7-1/:B:Z-
0 —4~1/3B;
0 0 I o
= 0 0 0 I
D= I 0 0 0)
0 I 00
Further, i
- 7'CC
X.—ch( BB —B,B; _A {42)
o 17’B,B;
Y := ch( c, A (43)
Z:=~'XY —I (44)
A:==-A°'—41"72°"YB,B; -1 'C;C,X. (45)

Applying the results of the previous section using this realization,
and taking s, — oo gives us the following important theorem.

Theorem 3.8. The entropy at infinity, I(E; v; 00), ts mazimized
over the class of error systems E in the distance problem of
Lemma 3.1 by the unique choice = 0.

If R{(c0) = 0, then the mazimum entropy error system is
simply

Exe =7[Rae + Qaalis

A 0 'B, B,
|0 A 0 +'Z-°YB,
“lc 0 lo 0 (46)
C, —+v'CXi 0 0

and the mazimum entropy is

IEug;7 00) = Trace(B; YB,] ~ Trace[B; 2" YB,] (47)
= Trace[C, XC;] — Trace[C,XZ~* C;]. (48)
Proof: From theorem 3.3 the maximum entropy error system

is characterized by the unique choice ® = Q},(s,). Letting s, —
20 along the real axis gives the maximum entropy at infinity
choice as & = Q;, (o0} = 0, because Q,, is strictly proper from
Lemma 3.1. For details of the limiting argument see {14]. That
the maximum entropy error system has a realization (46) follows
easily by setting ® = 0 in (13) and using Lemma 3.5.
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To obtain the value of the maximum entropy, we take the
limit as s, — oo along the real axis of the result of corollary 3.4.
that is,

U(Ewme;7;00) = lim (77 30 {Inidet(R3,(s0))| + In|det(Qq,(so !
= (1/2)in|det(T - Q{(5)Qui(s ))]}). (4
Consider a typical term from (49):

hm (.so In det(I+ C(s,I - A)"B))

(We have dropped the modulus sign because s; is real herel.
Now,
C(s,1-A)"'B =CBs;' +O(s;?)

so by Lemma Al (of the appendix) we have
3o Indet(I+ C(s,1 - A)"'B) = 5, (Trace[CBs; '} + O(s; *)).

Therefore, on taking limits as s, — oo,

'ohfn (50 Indet(T+ C(s,1—+.)7*B)) = Trace{fCB]. (3
Apply this to the terms in (49) using
R}, () =14+ ?B(s,I+A°)"'YB, (51
and  Qy(s) =I-4""Bj(s,]1-A)"'2Z-°YB, (52)
from (41) to get
I(Ep £;v:00) = Trace[B; YB.] ~ Trace[B;Z""YB,] (53)

as required, where the third term in (49) is zero in the limit
because Q,, is strictly proper.

The alternative expression (48) follows in an entirely similar
fashion; one notes that I(Ey g;v; 00) = I(E;, ¢; 7; o0) leading *

UEwsivio0) = lim (7" 30 {Inldet(R;,(s0))| + In|det(Q,.(s0))l
= (1/2)inldet(I - Q, (5)Q: (2 )I})  (54)
which gives (48) in the limit. FaYaYa

Remark 3.7. Notice that the entropy formulae (47) and (48)
depend only on the state space realization of R and the solutions
X and Y to the two Riccati equations (42) and (43) which are
ipherent in the solution to the distance problem. Calculation
of the maximum entropy therefore imposes negligible computa-
tional problems. Furthermore, the maximum entropy error sys-
tem (46), being the linear fractional map of ¢ = 0, is simply
v times the p, by m, (1,1) block of R,, + Q... which is also
available from the solution to the distance problem with no extra
computation,




e

Remark 3.8. Recali from Lemma 2.1 that {-I{G;00; 00}}'/* =
1G3 for strictly proper G. Thus if we let ¥ — oo in our maxi-
mnm ~ntropy solv‘on we should obtain exactly the H, optimal
sowution. We show here that this is indeed the case.

By using the results of Wimmer {13] it may be shown that
the positive semidefinite matrices -X and —Y are are monoton-
ically decreasing as 7 increases, and that —Z is monotonically
increasing as « increases. Taking v — oc weobtain Z,_ . = -1,

. A 0 -

X e =Rlc(—B,B; ~B,B; —A) (53)
A a

~C:C, - C;C, —A'> (56)

{with an obvious notation) which identifies the matrices - X, _
and =Y, _ . as the controllability and observability gramians of
R(—s), respectively.

and Y,_n = Ric(

Using this fact, a simple caiculation shows that

HEyg:xc;oc) = Trace(B;Y,_ . B,]
~TraceB;(Z.-w) " Y._B:] (57)

-Trace(|B,,B,]'[~Y, . B, B:]]

~hRi3 (58)

and that Qu g = 0.
It is well-known that the § ¢ RH,, which minimizes

el W), o

is Q = Qu, = 0 (the H, optimal solution) and in that case
{Eu,ils = ||Rlj;. Comparing this with (58) shows that we have
I(Euye; ;<) = —||Ey, ||}, illustrating the equivalence between
the maximum entropy distance problem at v, s, — oo and the
H, optimal distance problem.

Note that if v — v,,¢, then Ey s — E,,, the H,, optimal
so'ution. [t is easy to prove that [I{(Ey ¢ v; 20}/ is monotonically
decreasing as < increases from its optimal value; thus we have
shown how ~ can be used to move from H, optimal to H,
optimal via the maximum entropy solutions for 7., < ¥ < o0.
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Appendix
The following technical lemma is needed.
Lemma A1l Let M be a square matrix and ¢ > 0. Then
(1) In det{I—-eM) = —¢ Trace{M] + O(e?).
(ii) —Indet(I— €M* M) > € Trace(M*M].

Proof:  Part (i}. Use the Faddeev formula {Ganimacher (7},
p88) to obtain

det(I—eM) = 1 — ¢ Trace[M] + O(¢’)
and expand the iogarithm of this as a power series.
Part (ii). Using a well-known inequality,
~Indet(I- € M'M) = - Y " in(1 - €57 (M))

2 €al(M)

v

=€ Trace[]M"M]. AAL
We may now proceed with the proof of Lemma 2.1

Proof of Lemma 2.1:

1 )

Part (i). By Lemma Al we can write
{(Tracc[G'(jw)G(ju)])

[ Re s,

[se = Jw]

~I(Givis) =

27 J_ o

2
| hason

1 f= [\ Res, 1
=z \m{Trace hG()w)————(so o) ‘{
. Re s, . 2
X [G(JW)(_S—%:S}] } dw + O(y~ %),

Therefore,

—K(Gi i) = [|G(s)(Re s0)/(s + ) + O(x") (¢)
Noting that the O(7~?) terms are nonnegative we have

—HG;vis0) = IG(s){Re so)/(so + 5110

whilst
~K(Giouis,) = [GUs)(Re 5o)/(s0 & <7

follows by taking v — oo in ().

Part (ii) Firstly note that the integrands w t«. abnw are
monotonically increasing with s, and continucns, ap. .« - by
domipated convergence both sides of (*) tend to a limin as s, -+

oo. Each side is finite because ||Gli < v and Gio 1 : 0 by
assumption. The result then follows in a simular va. 10 ., roof
of part (i). SAN
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